Corporate Banner
Satellite Banner
Molecular & Clinical Diagnostics
Scientific Community
Become a Member | Sign in
Home>News>This Article

Exome Sequencing: Potential Diagnostic Assay for Unexplained Intellectual Disability

Published: Monday, November 12, 2012
Last Updated: Monday, November 12, 2012
Bookmark and Share
Research findings confirming that de novo mutations represent a major cause of previously unexplained intellectual disability were presented at the American Society of Human Genetics 2012 meeting.

Josep de Ligt, M.Sc., bioinformatician and Ph.D. student in human genetics at Radboud University Nijmegen Medical Centre in The Netherlands, also reported findings lending support to the use of exome sequencing, which deciphers over 21,000 protein-coding genes and not the entire human genome, as a diagnostic assay to determine whether one or more genetic mutations explain a patient’s intellectual disability.

The cause of intellectual disability, which represents a wide range of phenotypes, or observable biological characteristics, is unknown in at least 50% of patients. Most individuals with intellectual disability without a known cause are the only members of their families with the condition. Because the cause of their child’s cognitive impairment is unknown, parents are often baffled.

The child with a cognitive disability is often an “isolated case without family history of the condition,” said de Ligt, adding that intellectual disability occurs in about 1% of the population.

By exome sequencing of 100 patients with unexplained cognitive impairment, de Ligt and his colleagues uncovered 79 genes with unique de novo mutations. These de novo mutations were present in the DNA of the patients but not in that of their parents whose exomes also were sequenced.

“All de novo as well as X-linked mutations identified in this study were interpreted in the context of the clinical diagnosis,” de Ligt pointed out. The diagnostic interpretation revealed that 16 of the 100 mutations were causative, or pathogenic. Ten of these mutations occurred in genes already known to be involved in intellectual disability, and three X-linked maternally-inherited mutations were identified.

In addition, de novo mutations were uncovered in three novel candidate genes, which after follow-up were found to be more frequently mutated in patients with intellectual disability.

“Comparison of these patients showed clear overlapping phenotypes, thereby establishing pathogenicity for these three new genes,” said de Ligt.

Furthermore, disruptive de novo mutations were identified in 19 additional genes with a functional link to intellectual disability. Because 19 genes were found in only a single patient, de Ligt said that a conclusive diagnosis based on these findings could not be made.

Additional studies in larger patient cohorts will likely to confirm a considerable proportion of these as true intellectual disability genes, raising the diagnostic yield of this approach, he added.

“This study confirms that de novo mutations represent a major cause of previously unexplained intellectual disability,” said Joris Veltman, Ph.D., associate professor in human genetics, Radboud University Nijmegen Medical Centre. “Because of the availability of large scale sequencing strategies, these mutations can now be readily revealed.”

de Ligt said that the results of the study recommend “exome sequencing as a diagnostic assay for patients with unexplained intellectual disability.”

The researchers’ abstract is titled, “Diagnostic exome sequencing in patients with intellectual disability of unknown cause.”

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,700+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Scientific News
Education and Expense: The Barriers to Mass Spectrometry in Clinical Laboratories?
Here we examine the perceived barriers to mass spec in clinical laboratories and explore the possible drivers behind the recent shift in uptake of the technology in clinical settings.
Adult High Blood Pressure Risk Identifiable in Childhood
Groups of people at risk of having high blood pressure and other related health issues by age 38 can be identified in childhood, new University of Otago research suggests.
Potential New Diagnosis and Therapy for Breast Cancer
Scientists at the University of York, using clinical specimens from charity Breast Cancer Now’s Tissue Bank, have conducted new research into a specific sodium channel that indicates the presence of cancer cells and affects tumour growth rates.
Paving the Way for Diamonds to Trace Early Cancers
Researchers from the University of Sydney reveal how nanoscale 'diamonds' can light up early-stage cancers in MRI scans.
Will Brain Palpation Soon Be Possible?
Researchers have developed non-invasive brain imaging technique which provides the same information as physical palpation.
Groundbreaking Computer Program Diagnoses Cancer in Two Days
Researchers have combined genetics with computer science and created a new diagnostic technology can with 85 per cent certainty identify the source of the disease and thus target treatment and, ultimately, improve the prognosis for the patient.
Detecting HIV Diagnostic Antibodies with DNA Nanomachines
New research may revolutionize the slow, cumbersome and expensive process of detecting the antibodies that can help with the diagnosis of infectious and auto-immune diseases such as rheumatoid arthritis and HIV.
Horse Illness Shares Signs of Human Disease
Horses with a rare nerve condition have similar signs of disease as people with conditions such as Alzheimer’s, a study has found.
Compound Doubles Up On Cancer Detection
Researchers have found that tagging a pair of markers found almost exclusively on a common brain cancer yields a cancer signal that is both more obvious and more specific to cancer.
The Age of Humans Controlling Microbes
Engineered bacteria could soon be used to detect environmental toxins, treat diseases, and sustainably produce chemicals and fuels.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,700+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos