Corporate Banner
Satellite Banner
Molecular & Clinical Diagnostics
Scientific Community
Become a Member | Sign in
Home>News>This Article

New Statistical Method offers Automatic Mitotic Cell Detection for Cancer Diagnosis

Published: Thursday, November 15, 2012
Last Updated: Thursday, November 15, 2012
Bookmark and Share
Scientists have developed a statistical image analysis method which can assist in the grading of breast cancer by automatically segmenting tumour regions and detecting dividing cells in tissue samples.

The system, developed at the University of Warwick, promises to bring objectivity and automation to the cancer grading process which is used to determine the aggressiveness of the treatment offered to the patient.

Number of mitotic cells, cells which are dividing to create new cells, is a key indicator used by histopathologists for diagnosing and grading cancer.

At present the dominant system in the UK and much of the world – the Nottingham Grading System - is based on expert analysis of tissue samples to determine the severity of the cancer.

As a subjective system dependent on visual analysis, it can produce substantial variability in diagnostic assessment, resulting in low agreement between pathologists.

A pilot study conducted by researchers at Warwick found there to be an agreement of 19 per cent between three pathologists in identifying the mitotic cells.

In response to the need for more objectivity, a team at the University of Warwick have developed a three-step method which takes an image of tissue samples and applies statistical modelling to detect mitotic cells in that image.

Dr Nasir Rajpoot from the Department of Computer Science at the University of Warwick said: “It has long been recognised that there is a need to increase objectivity in the cancer grading process.

“This grading process determines the treatment offered to people who have been diagnosed with cancer, so it’s vital to get it right in order to prevent patients undergoing unnecessarily aggressive treatments.

“We believe our method takes a significant step towards this by offering an objective, automatic technique to assist the pathologists in grading of breast cancer.”

The method consists of three key steps. Firstly it segments the tumour margins, a step which is critical to the accuracy of mitotic cell detection.

Secondly it statistically models the intensity distribution of mitotic and non-mitotic cells in tumour areas, ignoring the non-tumorous areas. This step therefore identifies potential mitotic cells in tumour areas.

Finally the method looks at the surrounding architecture of these potential mitotic cell candidates in order to confirm them as mitotic cells, thereby reducing the number of possible false alarms.

Although there are algorithms in existence which provide automation in some parts of the mitotic cell detection process, the method developed at Warwick is the first to offer a comprehensive solution addressing the entire process.

The method is outlined in a study focusing on breast cancer histology images presented at a major conference on the subject.

Although the research to date has centred on breast cancer histology images, the scientists believe the method can be applied to other types of cancer.

In a pilot study, the method has been successfully tested against two expert pathologists’ identification of the mitotic cells. Larger scale trials are currently under way and a patent application has been filed. The researchers are also keen to collaborate with industrial partners.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Scientific News
Mathematical Model Forecasts the Path of Breast Cancer
Chances of survival depend on which organs breast cancer tumors colonize first.
Measuring microRNAs in Blood to Speed Cancer Detection
A simple, ultrasensitive microRNA sensor holds promise for the design of new diagnostic strategies and, potentially, for the prognosis and treatment of pancreatic and other cancers.
Biomedical Imaging at One-Thousandth the Cost
Mathematical modeling enables $100 depth sensor to approximate the measurements of a $100,000 piece of lab equipment.
Improving Outcomes for Lung Cancer and Diabetic Patients
Novel technologies have been developed with support from SBRI Healthcare funding.
New Way of Detecting Cancer
A new RNA test of blood platelets can be used to detect, classify and pinpoint the location of cancer by analysing a sample equivalent to one drop of blood.
Rapid, Portable Ebola Diagnostic
Scientists confirmed the efficiency of the novel Ebola detection method in field trials.
New, Better Test for Prostate Cancer
A study from Karolinska Institutet shows that a new test for prostate cancer is better at detecting aggressive cancer than PSA.
Blood Test Picks Out Prostate Cancer Drug Resistance
Scientists have developed a blood test that can identify key mutations driving resistance to a widely used prostate cancer drug, and identify in advance patients who will not respond to treatment.
Antibody Targets Key Cancer Marker
University of Wisconsin-Madison researchers have created a molecular structure that attaches to a molecule on highly aggressive brain cancer and causes tumors to light up in a scanning machine.
Key Piece of MRSA Vaccine Puzzle
New research funded by the Health Research Board and the Wellcome Trust has pinpointed immune cells that could be targeted by an MRSA vaccine.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos