Corporate Banner
Satellite Banner
Molecular & Clinical Diagnostics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Improving the Accuracy of Cancer Diagnoses

Published: Tuesday, January 08, 2013
Last Updated: Tuesday, January 08, 2013
Bookmark and Share
New spectroscopy technique could help doctors better identify breast tumors.

Tiny calcium deposits can be a telltale sign of breast cancer. However, in the majority of cases these microcalcifications signal a benign condition.  A new diagnostic procedure developed at MIT and Case Western Reserve University (CWRU) could help doctors more accurately distinguish between cancerous and noncancerous cases.

When microcalcifications are spotted through mammography, doctors perform a follow-up biopsy to remove the suspicious tissue and test it for cancer. In 15 to 25 percent of cases, however, they are unable to retrieve the tissue that contains the calcium deposits, leading to an inconclusive diagnosis. The patient then has to undergo a much more invasive surgical procedure.

The new method, which uses a special type of spectroscopy to locate microcalcifications during the biopsy, could dramatically reduce the rate of inconclusive diagnosis, according to the researchers. In a study appearing in the Proceedings of the National Academy of Sciences the week of Dec. 24, they found that the spectroscopy technique had a success rate of 97 percent.

In addition, the spectroscopic approach could easily be integrated into the current biopsy procedure, says Ishan Barman, an MIT postdoc and one of the paper’s lead authors. MIT postdocs Jaqueline Soares and Narahara Chari Dingari are also lead authors; senior authors are Maryann Fitzmaurice, senior research associate and adjunct associate professor of pathology and oncology at CWRU, and Ramachandra Rao Dasari, associate director of MIT’s Laser Biomedical Research Center (LBRC).

‘An arduous procedure’

Microcalcifications form when calcium from the bloodstream is deposited onto degraded proteins and lipids left behind by injured and dying cells. Though often seen in breast tumors, microcalcifications are rarely found in other types of cancer, Fitzmaurice says. Calcification also plays a major role in the hardening of the arteries seen in atherosclerosis.

Among women with microcalcifications spotted during a mammogram, only about 10 percent will turn out to have cancer, so the follow-up biopsy is critical. During that procedure, the radiologist first takes X-rays from three different angles to locate the microcalcifications, then inserts a needle into the tissue and removes five to 10 samples.

A pathologist then examines the tissues to see if they contain microcalcifications. If not, the radiologist tries again, after taking new X-rays. However, this second attempt is rarely successful, Fitzmaurice says.

“If they don't get them on the first pass, they usually don't get them at all,” she says. “It can become a very long and arduous procedure for the patient, with a lot of extra X-ray exposure, and in the end they still don't get what they’re after, in one out of five patients.”

For the past several years, the MIT and CWRU team has been working to develop a spectroscopic technique that can analyze the tissue that the radiologist is about to biopsy — revealing, in a matter of seconds, whether that tissue actually contains microcalcifications.

They began with Raman spectroscopy, which uses light to measure energy shifts in molecular vibrations, revealing precise molecular structures. Because it offers such detailed information about the chemical composition of a tissue, Raman spectroscopy is very accurate in identifying microcalcifications. However, the equipment required is expensive, and the analysis takes a long time.

In the new study, the researchers showed that another technique, known as diffuse reflectance spectroscopy, gives results just as accurate as Raman spectroscopy. What makes diffuse reflectance spectroscopy more appealing is that it provides information within seconds, allowing the radiologist to move the needle if it’s in the wrong spot, before taking any samples.

“With our new method, we could obtain similar results with less time and less expense,” Dingari says.

Distinctive patterns

Diffuse reflectance spectroscopy works by sending light toward the tissue, then capturing and analyzing the light after its interaction with the sample. In this study, the researchers examined 203 tissue samples from 23 patients, within minutes of those samples’ removal.

Each of the three types of tissue (healthy, lesions without microcalcifications, and lesions with microcalcifications) has subtle differences in its spectrographic signature, which can be used to distinguish among them. By analyzing these patterns, the researchers created a computer algorithm that can identify the tissues with a success rate of 97 percent.

The changes in tissues’ light absorption are likely caused by altered levels of specific proteins (elastin, desmosine and isodesmosine) that are often cross-linked with calcium deposits in diseased tissue, Soares says.

For clinical use, a radiologist would perform spectroscopy just after inserting the needle to provide enhanced real-time guidance to the current biopsy procedure. The researchers are now planning for a study in which they will test their needle and spectroscopy setup in patients as the biopsies are being done.

James Tunnell, an associate professor of biomedical engineering at the University of Texas, says the findings represent a good first step toward creating a system that could have a big impact on breast cancer diagnosis. “This technology can be integrated into the system that is already used to take biopsies. It’s a very simple technology that can get the same amount of accuracy as more complicated systems” such as Raman spectroscopy, says Tunnell, who was not involved in the study.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Real-Time Data for Cancer Therapy
Biochemical sensor implanted at initial biopsy could allow doctors to better monitor and adjust cancer treatments.
Thursday, August 06, 2015
Bacterial Computing
The “friendly” bacteria inside our digestive systems are being given an upgrade, which may one day allow them to be programmed to detect and ultimately treat diseases such as colon cancer and immune disorders.
Monday, July 13, 2015
Chemists Design a Quantum-Dot Spectrometer
New instrument is small enough to function within a smartphone, enabling portable light analysis.
Friday, July 03, 2015
Diagnosing Cancer with Help from Bacteria
Engineered probiotics can detect tumors in the liver.
Friday, May 29, 2015
Using Sound Waves To Detect Rare Cancer Cells
Acoustic device can rapidly isolate circulating tumor cells from patient blood samples.
Tuesday, April 07, 2015
MIT And MGH Form Strategic Partnership
First set of grants support projects designed to improve diagnostic accuracy and cost-effectiveness.
Friday, October 17, 2014
Biologists Find An Early Sign Of Cancer
Patients show boost in certain amino acids years before diagnosis of pancreatic cancer.
Tuesday, September 30, 2014
New Sensor Tracks Zinc in Cells
Shifts in zinc’s location could be exploited for early diagnosis of prostate cancer.
Wednesday, December 11, 2013
New Approach to Global Health Challenges
MIT’s Institute for Medical Engineering and Science brings many tools to the quest for new disease treatments and diagnostic devices.
Friday, September 27, 2013
Brain Scans May Help Diagnose Dyslexia
Differences in a key language structure can be seen even before children start learning to read.
Thursday, August 15, 2013
Device Finds Stray Cancer Cells in Patients’ Blood
A microfluidic device that captures circulating tumor cells could give doctors a noninvasive way to diagnose and track cancers.
Wednesday, April 10, 2013
AAAS Annual Meeting Puts MIT Science and Technology on Display
The 2013 conference, held last week in Boston, featured research presentations, hands-on demonstrations.
Friday, February 22, 2013
Tiny Tools Help Advance Medical Discoveries
MIT researchers are designing tools to analyze cells at the microscale.
Tuesday, January 08, 2013
New Technology May Enable Earlier Cancer Diagnosis
Nanoparticles amplify tumor signals, making them much easier to detect in the urine.
Friday, December 21, 2012
Oscillating Microscopic Beads Could be Key to Biolab on a Chip
MIT team finds way to manipulate and measure magnetic particles without contact, potentially enabling multiple medical tests on a tiny device.
Tuesday, September 25, 2012
Scientific News
The Changing Tides of the In Vitro Diagnostics Market
With the increasing focus in personalized medicine, diagnostics plays a crucial role in patient monitoring.
‘Mutation-Tracking’ Blood Test for Breast Cancer
Scientists have developed a blood test for breast cancer able to identify which patients will suffer a relapse after treatment, months before tumours are visible on hospital scans.
Common ‘Heart Attack’ Blood Test May Predict Future Hypertension
Small rises in troponin levels may have value as markers for subclinical heart damage and high blood pressure.
Poor Survival Rates in Leukemia Linked to Persistent Genetic Mutations
For patients with an often-deadly form of leukemia, new research suggests that lingering cancer-related mutations – detected after initial treatment with chemotherapy – are associated with an increased risk of relapse and poor survival.
'Fountain of Youth' Protein Points to Possible Human Health Benefit
Patients with higher blood levels of growth factor have lower risk of cardiovascular problems.
Signature of Microbiomes Linked to Schizophrenia
Studying microbiomes in throat may help identify causes and treatments of brain disorder.
Imaging Software Could Speed Breast Cancer Diagnosis
Technology could improve access to diagnostic services in developing countries.
Data Mining DNA For Polycystic Ovary Syndrome Genes
A new Northwestern Medicine genome-wide association study of PCOS – the first of its kind to focus on women of European ancestry – has provided important new insights into the underlying biology of the disorder.
Algorithm Interprets Breathing Difficulties to Aid in Medical Care
Researchers from North Carolina State University have developed an efficient algorithm that can interpret the wheezing of patients with breathing difficulties to give medical providers information about what’s happening in the lungs.
Researchers Develop qPCR Prognosis Test for NSCLC Patients
A nine-gene molecular prognostic index (MPI) for patients with early-stage non-small cell lung cancer (NSCLC) was able to provide accurate survival stratification and could potentially inform the use of adjuvant therapy in patients struggling with the disease.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!