" "
Satellite Banner
Molecular & Clinical Diagnostics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Johns Hopkins Scientists Use Pap Test Fluid To Detect Ovarian, Endometrial Cancers

Published: Monday, January 14, 2013
Last Updated: Monday, January 14, 2013
Bookmark and Share
In a pilot study, the “PapGene” test, which relies on genomic sequencing of cancer-specific mutations, accurately detected 100 percentof endometrial cancers and (41 percent ovarian cancers.

The investigators note that larger-scale studies are needed before clinical implementation can begin, but they believe the test has the potential to pioneer genomic-based cancer screening tests.

The Papanicolaou (Pap) test, during which cells collected from the cervix are examined for microscopic signs of cancer, is widely and successfully used to screen for cervical cancers. However, no routine screening method is available for ovarian or endometrial cancers.

Since the Pap test occasionally contains cells shed from the ovaries or endometrium, cancer cells arising from these organs could be present in the fluid as well, says Luis Diaz, M.D., associate professor of oncology at Johns Hopkins, as well as director of translational medicine at the Ludwig Center for Cancer Genetics and Therapeutics and director of the Swim Across America Laboratory, also at Johns Hopkins. The laboratory is sponsored by a volunteer organization that raises funds for cancer research through swim events. “Our genomic sequencing approach may offer the potential to detect these cancer cells in a scalable and cost-effective way,” adds Diaz.

Cervical fluid of patients with gynecologic cancer carries normal cellular DNA mixed together with DNA from cancer cells, according to the investigators. The investigators’ task was to use genomic sequencing to distinguish cancerous from normal DNA.

The scientists had to determine the most common genetic changes in ovarian and endometrial cancers in order to prioritize which genomic regions to include in their test. They searched publicly available genome-wide studies of ovarian cancer, including those done by other Johns Hopkins investigators, to find mutations specific to ovarian cancer. Such genome-wide studies were not available for the most common type of endometrial cancer, so they conducted genome-wide sequencing studies on 22 of these endometrial cancers.

From the ovarian and endometrial cancer genome data, the Johns Hopkins-led team identified 12 of the most frequently mutated genes in both cancers and developed the PapGene test with this insight in mind.

The investigators then applied PapGene on Pap test samples from ovarian and endometrial cancer patients at The Johns Hopkins Hospital, Memorial Sloan-Kettering Cancer Center, the University of São Paulo in Brazil and ILSbio, a tissue bank. The new test detected both early- and late-stage disease in the endometrial and ovarian cancers tested. No healthy women in the control group were misclassified as having cancer.

The investigators’ next steps include applying PapGene on more samples and working to increase the test’s sensitivity in detecting ovarian cancer. “Performing the test at different times during the menstrual cycle, inserting the cervical brush deeper into the cervical canal, and assessing more regions of the genome may boost the sensitivity,” says Chetan Bettegowda, M.D., Ph.D., assistant professor of neurosurgery at Johns Hopkins and a member of the Ludwig Center as well.

Together, ovarian and endometrial cancers are diagnosed in nearly 70,000 women in the United States each year, and about one-third of them will die from it. “Genomic-based tests could help detect ovarian and endometrial cancers early enough to cure more of them,” says graduate student Yuxuan Wang, who notes that the cost of the test could be similar to current cervical fluid HPV testing, which is less than $100.

PapGene is a high-sensitivity approach for the detection of cancer-specific DNA mutations, according to the investigators; however, false mutations can be erroneously created during the many steps — including amplification, sequencing and analysis — required to prepare the DNA collected from a Pap test specimen for sequencing. This required the investigators to build a safeguard into PapGene’s sequencing method, designed to weed out artifacts that could lead to misleading test results.

“If unaccounted for, artifacts could lead to a false positive test result and incorrectly indicate that a healthy person has cancer,” says graduate student Isaac Kinde.

Kinde added a unique genetic barcode — a random set of 14 DNA base pairs — to each DNA fragment at an initial stage of the sample preparation process. Although each DNA fragment is copied many times before eventually being sequenced, all of the newly copied DNA can be traced back to one original DNA molecule through their genetic barcodes. If the copies originating from the same DNA molecule do not all contain the same mutation, then an artifact is suspected and the mutation is disregarded. However, bonafide mutations, which exist in the sample before the initial barcoding step, will be present in all of the copies originating from the original DNA molecule.

Funding for the research was provided by Swim Across America, the Commonwealth Fund, the Hilton-Ludwig Cancer Prevention Initiative, the Virginia & D.K. Ludwig Fund for Cancer Research, the Experimental Therapeutics Center of the Memorial Sloan-Kettering Cancer Center, the Chia Family Foundation, The Honorable Tina Brozman Foundation, the United Negro College Fund/Merck Graduate Science Research Dissertation Fellowship, the Burroughs Wellcome Career Award for Medical Scientists, the National Colorectal Cancer Research Alliance and the National Institutes of Health’s National Cancer Institute (N01-CN-43309, CA129825, CA43460).

In addition to Kinde, Bettegowda, Wang and Diaz, investigators participating in the research include Jian Wu, Nishant Agrawal, Ie-Ming Shih, Robert Kurman, Robert Giuntoli, Richard Roden and James R. Eshleman from Johns Hopkins; Nickolas Papadopoulos, Kenneth Kinzler and Bert Vogelstein from the Ludwig Center at Johns Hopkins; Fanny Dao and Douglas A. Levine from Memorial Sloan-Kettering Cancer Center; and Jesus Paula Carvalho and Suely Kazue Nagahashi Marie from the University of São Paulo.

Papadopoulos, Kinzler, Vogelstein and Diaz are co-founders of Inostics and Personal Genome Diagnostics. They own stocks in the companies and are members of their Scientific Advisory Boards.  Inostics and Personal Genome Diagnostics have licensed several patent applications from Johns Hopkins.  These relationships are subject to certain restrictions under The Johns Hopkins University policy, and the terms of these arrangements are managed by the university in accordance with its conflict-of-interest policies.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Counting Cancer-busting Oxygen Molecules
Researchers from the Centre for Nanoscale BioPhotonics (CNBP), an Australian Research Centre of Excellence, have shown that nanoparticles used in combination with X-rays, are a viable method for killing cancer cells deep within the living body.
Genomic Signature Shared by Five Types of Cancer
National Institutes of Health researchers have identified a striking signature in tumor DNA that occurs in five different types of cancer.
Crowdfunding the Fight Against Cancer
From budding social causes to groundbreaking businesses to the next big band, crowdfunding has helped connect countless worthy projects with like-minded people willing to support their efforts, even in small ways. But could crowdfunding help fight cancer?
"Gene Fusion" Drives Childhood Brain Cancers
Study co-led by Penn scientists highlights potential targets for future cancer therapies.
Head Injury Patients Develop Brain Clumps Associated with Alzheimer’s Disease
Scientists have revealed that protein clumps associated with Alzheimer's disease are also found in the brains of people who have had a head injury.
New Way to Identify Brain Tumor Aggressiveness
Looking at a brain tumor’s epigenetic signature may help guide therapy.
OncoCyte, The Wistar Institute Enter Global Licensing Agreement
Exclusive rights to commercialize biomarker assay follows years of positive collaboration on lung cancer diagnostic test.
Easier Diagnosis for Fungal Infection of the Lungs
A new clinical imaging method developed in collaboration with a University of Exeter academic may enable doctors to tackle one of the main killers of patients with weakened immune systems sooner and more effectively.
Antibiotic Susceptibility Testing
A team of biologists and biomedical researchers at UC San Diego has developed a new method to determine if bacteria are susceptible to antibiotics within a few hours, an advance that could slow the appearance of drug resistance and allow doctors to more rapidly identify the appropriate treatment for patients with life threatening bacterial infections.
Spotlight on Acoustic Liquid Handling
Journal of Laboratory Automation special issue highlights how acoustic liquid handling enables breakthrough innovations.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!