Corporate Banner
Satellite Banner
Molecular & Clinical Diagnostics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

New Method Developed to Diagnose Hereditary Breast and Ovarian Cancer

Published: Wednesday, January 16, 2013
Last Updated: Wednesday, January 16, 2013
Bookmark and Share
Massive sequencing algorithm and bioinformatic analysis to detect very efficiently genetic mutations linked to the disease.

Researchers of the Catalan Institute of Oncology (ICO) at the Bellvitge Biomedical Research Institute (IDIBELL) have developed and validated a new method to diagnose hereditary breast and ovarian cancer syndrome based on mass sequencing of BRCA1 and BRCA2 genes. The model is based on a genetic analysis and bioinformatics which has been proved very effective. The new protocol has been described in an article published in the European Journal of Human Genetics.
 
In recent years, new advances in sequencing techniques have involved the development of new platforms for nucleic acid sequencing, called mass sequencing platforms or next sequencing generation. These technological improvements have brought a revolution in biomedical research, in the field of genetics and genomics. The emergence of next-generation sequencers and the possibility of combining samples from different patients, using identifiers have allowed adapt these new technologies in the field of genetic diagnostics.
 
Using a platform of the last generation mass sequencing, the team led by the researcher Conxi Lázaro, from the Hereditary Cancer Program at the ICO and IDIBELL, has developed a comprehensive protocol that allows sequenced all coding regions and adjacent regions of BRCA1 and BRCA2 genes, responsible for hereditary breast and ovarian cancer.
 
 Mass sequencing algorithm

 
"This approach has identified all point mutations and small deletions and insertions analyzed, even in regions of high technical difficulty, such as homopolymeric regions", explains the ICO-IDIBELL researcher. The developed protocol is an own algorithm of mass sequencing and bioinformatics analysis that has been shown to be very efficient in the detection of all existing mutations and to eliminate false positives.
 
The validation of this algorithm to diagnose hereditary breast and ovarian cancer syndrome has shown a sensitivity and specificity of 100% in the analyzed samples, while reducing costs and time for obtaining the results.
 
Furthermore, the research team led by Lázaro has implemented the use of this approach for the responsible genes for hereditary colorectal cancer, such as familial polyposis and Lynch syndrome.
 
Up to ten percent of cancers are hereditary, which means they are transmitted from parents to children the genetic mutations predisposing to various types of tumors. The identification of these mutations is very important to prevent the occurrence of tumors in people who have familial predisposition.
 
The hereditary breast and ovarian cancer syndrome is one of the hereditary cancer types that affects more people. The disease is caused by mutations in the BRCA1 and BRCA2 genes. These mutations are also associated with other kind of cancers.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Researchers Discover the Genetic Signature of Highly Aggressive Small Lung Tumors
A study conducted by the IDIBELL allows to identify this type of cancer at an early stage and adapt the treatment.
Thursday, October 03, 2013
IDIBELL and ICFO Researchers Develop Technology that Predicts Metastasis in Breast Cancer
Raman is a promising microspectroscopy technique for identifying metastatic phenotype of breast cancer cells from their lipid profile.
Monday, October 22, 2012
Scientific News
Diagnostic Test Developed for Enterovirus D68
researchers at Washington University School of Medicine in St. Louis have developed a diagnostic test to quickly detect enterovirus D68 (EV-D68), a respiratory virus that caused unusually severe illness in children last year.
Tracking Breast Cancer Before it Grows
A team of scientists led by University of Saskatchewan researcher Saroj Kumar is using cutting-edge Canadian Light Source techniques to screen and treat breast cancer at its earliest changes.
The Light of Fireflies for Medical Diagnostics
EPFL scientists have exploited the light of fireflies in a new method that detects biological molecules without the need for complex devices and high costs.
Could a simple saliva test detect Alzheimer's?
Researchers have presented findings suggesting that a simple, non-invasive diagnostic for Alzheimer's could be within reach.
Cheap Diagnostics with a Portable "Paper Machine"
Scientists have developed a cheap, portable system for point of care diagnostics for a range of infectious diseases, genetic conditions and cancer.
New Variant of Streptococcal Bacteria
Scientists have discovered a new variant of streptococcal bacteria that has contributed to a rise in disease cases in the UK over the last 17 years.
New Insights into “Antenna” of Human Cells
Scientists from the University of Leeds have uncovered the most comprehensive list yet of genes implicated in a group of common inherited diseases.
Discordant NIPT Test Results May Reflect Presence of Maternal Cancer
Results published in Journal of the American Medical Association.
Sperm RNA Test May Improve Evaluation of Male Infertility
To help resolve uncertainty—and guide prospective parents to the right fertility treatments—scientists propose the use of a new kind of fertility test. It involves examining sperm RNA by means of next-generation sequencing.
Optical 'Dog's Nose' Developed to Detect Cancer, Other Diseases
Researchers are using optical spectroscopy to develop a quick, non-invasive “breath test” they believe will have the potential to screen for a variety of diseases, including diabetes, infections and cancers.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!