Corporate Banner
Satellite Banner
Molecular & Clinical Diagnostics
Scientific Community
Become a Member | Sign in
Home>News>This Article

Astronomy Algorithms Help Diagnose Aggressive Tumors

Published: Monday, February 25, 2013
Last Updated: Monday, February 25, 2013
Bookmark and Share
Scientists have honed techniques originally developed to spot distant galaxies and used them to identify biomarkers that signal a cancer’s aggressiveness among some 2,000 breast tumours.

The findings mean that the age-old practice of pathologists looking down the microscope to spot key differences in the staining of tumour samples could one day become a thing of the past.

To develop this new automated approach the researchers, from the Cancer Research UK Cambridge Institute, and the Department of Oncology and the Institute of Astronomy at the University of Cambridge, adapted techniques used by astronomers to automatically pick out indistinct objects in the night sky.

They applied these to immunohistochemistry (IHC), which relies on pathologists being able to distinguish subtle differences in the staining of tumour cells down the microscope, depending on the specific proteins they express.

To road test the new approach they used it to measure the levels of three different proteins linked to more aggressive cancers, across tumour samples from more than 2,000 breast cancer patients.

They compared the accuracy of manually scoring these results, by observing the staining of the tumour samples down the microscope, versus relying on a computer to do this automatically. This showed that the new automated system was at least as accurate as the manual one, whilst at the same time being many times faster.

Study lead author Dr Raza Ali, a pathology fellow from Cancer Research UK’s Cambridge Institute at the University of Cambridge, said: “We’ve exploited the natural overlap between the techniques astronomers use to analyse deep sky images from the largest telescopes and the need to pinpoint subtle differences in the staining of tumour samples down the microscope.

“The results have been even better than we’d hoped, with our new automated approach performing with accuracy comparable to the time-consuming task of scoring images manually, after only relatively minor adjustments to the formula. We’re now planning a larger international study involving samples from more than 20,000 breast cancer patients to further refine our strategy.”

Senior author Professor Carlos Caldas, also from Cancer Research UK’s Cambridge Institute at the University of Cambridge, added:  “Modern techniques are giving us some of the first insights into the key genes and proteins important in predicting the success or failure of different cancer treatments. But before these can be applied in the clinic, their usefulness needs to be verified in hundreds or sometimes thousands of tumour samples. Already this new automated approach means we can now analyse up to 4,000 images a day, helping streamline the process of translating these discoveries into the clinic.”

Dr Nicholas Walton, from Cambridge University’s Institute of Astronomy, said: “It’s great that our image analysis software, which was originally developed to help, for instance, track down planets harbouring life outside of our Solar system, is now also being used to help improve the outlook for cancer patients, much closer to home.”

Dr Julie Sharp, senior science information manager at Cancer Research UK, said: “This unlikely collaboration between astronomers and cancer researchers is a prime example of how, by working together, scientists from different disciplines can bring about innovative new solutions for beating cancer.”

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

‘Liquid Biopsies’ Could Help Spot Genetic Faults in Lung Cancer
Study analyze blood samples from 97 patients who took part in the EURTAC clinical trial.
Saturday, March 07, 2015
Cancer Cell Fingerprints in the Blood May Speed up Childhood Cancer Diagnosis
Researchers found unique molecular fingerprints for 11 types of children’s tumours, to develop blood tests to diagnose these cancers.
Tuesday, November 04, 2014
immatics Enters Collaboration with Cancer Research UK to Develop Cancer Vaccine
Cancer Research UK will sponsor and conduct a Phase I trial of IMA950 for glioblastoma.
Wednesday, February 17, 2010
Scientific News
Mathematical Model Forecasts the Path of Breast Cancer
Chances of survival depend on which organs breast cancer tumors colonize first.
Measuring microRNAs in Blood to Speed Cancer Detection
A simple, ultrasensitive microRNA sensor holds promise for the design of new diagnostic strategies and, potentially, for the prognosis and treatment of pancreatic and other cancers.
Biomedical Imaging at One-Thousandth the Cost
Mathematical modeling enables $100 depth sensor to approximate the measurements of a $100,000 piece of lab equipment.
Improving Outcomes for Lung Cancer and Diabetic Patients
Novel technologies have been developed with support from SBRI Healthcare funding.
New Way of Detecting Cancer
A new RNA test of blood platelets can be used to detect, classify and pinpoint the location of cancer by analysing a sample equivalent to one drop of blood.
Rapid, Portable Ebola Diagnostic
Scientists confirmed the efficiency of the novel Ebola detection method in field trials.
New, Better Test for Prostate Cancer
A study from Karolinska Institutet shows that a new test for prostate cancer is better at detecting aggressive cancer than PSA.
Blood Test Picks Out Prostate Cancer Drug Resistance
Scientists have developed a blood test that can identify key mutations driving resistance to a widely used prostate cancer drug, and identify in advance patients who will not respond to treatment.
Antibody Targets Key Cancer Marker
University of Wisconsin-Madison researchers have created a molecular structure that attaches to a molecule on highly aggressive brain cancer and causes tumors to light up in a scanning machine.
Key Piece of MRSA Vaccine Puzzle
New research funded by the Health Research Board and the Wellcome Trust has pinpointed immune cells that could be targeted by an MRSA vaccine.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos