Corporate Banner
Satellite Banner
Molecular & Clinical Diagnostics
Scientific Community
Become a Member | Sign in
Home>News>This Article

Astronomy Algorithms Help Diagnose Aggressive Tumors

Published: Monday, February 25, 2013
Last Updated: Monday, February 25, 2013
Bookmark and Share
Scientists have honed techniques originally developed to spot distant galaxies and used them to identify biomarkers that signal a cancer’s aggressiveness among some 2,000 breast tumours.

The findings mean that the age-old practice of pathologists looking down the microscope to spot key differences in the staining of tumour samples could one day become a thing of the past.

To develop this new automated approach the researchers, from the Cancer Research UK Cambridge Institute, and the Department of Oncology and the Institute of Astronomy at the University of Cambridge, adapted techniques used by astronomers to automatically pick out indistinct objects in the night sky.

They applied these to immunohistochemistry (IHC), which relies on pathologists being able to distinguish subtle differences in the staining of tumour cells down the microscope, depending on the specific proteins they express.

To road test the new approach they used it to measure the levels of three different proteins linked to more aggressive cancers, across tumour samples from more than 2,000 breast cancer patients.

They compared the accuracy of manually scoring these results, by observing the staining of the tumour samples down the microscope, versus relying on a computer to do this automatically. This showed that the new automated system was at least as accurate as the manual one, whilst at the same time being many times faster.

Study lead author Dr Raza Ali, a pathology fellow from Cancer Research UK’s Cambridge Institute at the University of Cambridge, said: “We’ve exploited the natural overlap between the techniques astronomers use to analyse deep sky images from the largest telescopes and the need to pinpoint subtle differences in the staining of tumour samples down the microscope.

“The results have been even better than we’d hoped, with our new automated approach performing with accuracy comparable to the time-consuming task of scoring images manually, after only relatively minor adjustments to the formula. We’re now planning a larger international study involving samples from more than 20,000 breast cancer patients to further refine our strategy.”

Senior author Professor Carlos Caldas, also from Cancer Research UK’s Cambridge Institute at the University of Cambridge, added:  “Modern techniques are giving us some of the first insights into the key genes and proteins important in predicting the success or failure of different cancer treatments. But before these can be applied in the clinic, their usefulness needs to be verified in hundreds or sometimes thousands of tumour samples. Already this new automated approach means we can now analyse up to 4,000 images a day, helping streamline the process of translating these discoveries into the clinic.”

Dr Nicholas Walton, from Cambridge University’s Institute of Astronomy, said: “It’s great that our image analysis software, which was originally developed to help, for instance, track down planets harbouring life outside of our Solar system, is now also being used to help improve the outlook for cancer patients, much closer to home.”

Dr Julie Sharp, senior science information manager at Cancer Research UK, said: “This unlikely collaboration between astronomers and cancer researchers is a prime example of how, by working together, scientists from different disciplines can bring about innovative new solutions for beating cancer.”

Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More than 5,200+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Opening Door to Oesophageal Cancer Targeted Treatments
Scientists have discovered that oesophageal cancer can be classified into three different subtypes.
Tuesday, September 06, 2016
Cancer Research UK joins forces with U.S. 'Cancer Moonshot'
Cancer Research UK and the US government’s National Cancer Institute have announced that two teams will work together to radically accelerate progress against cancer, in one of the first international collaborations inspired by US Vice President Joe Biden’s Cancer Moonshot.
Monday, July 04, 2016
‘Liquid Biopsies’ Could Help Spot Genetic Faults in Lung Cancer
Study analyze blood samples from 97 patients who took part in the EURTAC clinical trial.
Saturday, March 07, 2015
Cancer Cell Fingerprints in the Blood May Speed up Childhood Cancer Diagnosis
Researchers found unique molecular fingerprints for 11 types of children’s tumours, to develop blood tests to diagnose these cancers.
Tuesday, November 04, 2014
immatics Enters Collaboration with Cancer Research UK to Develop Cancer Vaccine
Cancer Research UK will sponsor and conduct a Phase I trial of IMA950 for glioblastoma.
Wednesday, February 17, 2010
Scientific News
Point of Care Diagnostics - A Cautious Revolution
Advances in molecular biology, coupled with the miniaturization and improved sensitivity of assays and devices in general, have enabled a new wave of point-of-care (POC) or “bedside” diagnostics.
Smartphone Laboratory Detects Cancer
Researchers develop low-cost, portable laboratory on a smartphonecapable of analysing multiple samples simultaneously.
Nanomedicine for Breast Cancer Treatment
Using nanoparticles measuring only billionths of a meter in size, doctors are able to deliver drug molecules directly to the affected tissue.
Clamping Down on Biomolecules
Physicists have developed a novel nanotool that provides a means of characterizing the mechanical properties of biomolecules.
MRIs for Fetal Health
Algorithm could help analyze fetal scans to determine whether interventions are warranted.
Illumina Contributes to ClinVar Database
The contribution includes variants of all classifications, from pathogenic to benign, identified during interpretation of whole genome sequences generated in the CLIA-certified, CAP-accredited Illumina Clinical Services Laboratory.
Signaling Pathway Could Be Key to Improved Osteoporosis Treatment
Inhibition of SIK2 enzyme both stimulates bone formation and reduces bone breakdown in animal model.
Supercomputers Could Improve Cancer Diagnostics
Researchers push the boundaries of cancer research through high-performance computing to map the human immunone.
Transgenomic, Precipio Diagnostics Merger
Merger will creates a robust diagnostic platform focused on improving accuracy of cancer diagnoses.
Inflammation Test May Predict Cardiovascular Disease
An assessment combining measures of immune-cell responsiveness predicted cardiovascular problems in individuals who likely would have slipped under the radar.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,200+ scientific videos