Corporate Banner
Satellite Banner
Molecular & Clinical Diagnostics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

New Cancer Diagnostic Technique Debuts

Published: Wednesday, March 27, 2013
Last Updated: Wednesday, March 27, 2013
Bookmark and Share
Scientists devise a molecular sensor that can detect levels of lactate in individual cells in real time.

Cancer cells break down sugars and produce the metabolic acid lactate at a much higher rate than normal cells. This phenomenon provides a telltale sign that cancer is present, via diagnostics such as PET scans, and possibly offers an avenue for novel cancer therapies. Now a team of Chilean researchers at The Centro de Estudios Científicos (CECs), with the collaboration of Carnegie’s Wolf Frommer, has devised a molecular sensor that can detect levels of lactate in individual cells in real time.
 
Prior to this advance, no other measurement method could non-invasively detect lactate in real time at the single-cell level. The work, published in the open access journal PLOS ONE, is a boon to understanding how different types of cells go awry when cancer hits.
 
“Over the last decade, the Frommer lab at Carnegie has pioneered the use of Förster Resonance Energy Transfer, or FRET, sensors to measure the concentration and flow of sugars in individual cells with a simple fluorescent color change. This has started to revolutionize the field of cell metabolism,” explained CECs researcher Alejandro San Martín, lead author of the article. “Using the same underlying physical principle and inspired by the sugar sensors, we have now invented a new type of sensor based on a transcriptional factor. A molecule that normally helps bacteria to adapt to its environment has now been tricked into measuring lactate for us.”
 
Lactate shuttles between cells and inside cells as part of the normal metabolic process. But it is also involved in diseases that include inflammation, inadequate oxygen supply to cells, restricted blood supply to tissues, and neurological degradation, in addition to cancer.
 
“Standard methods to measure lactate are based on reactions among enzymes, which require a large number of cells in complex cell mixtures,” explained Felipe Barros, leader of the project. “This makes it difficult or even impossible to see how different types of cells are acting when cancerous. Our new technique lets us measure the metabolism of individual cells, giving us a new window for understanding how different cancers operate. An important advantage of this technique is that it may be used in high-throughput format, as required for drug development.”
 
This work used a bacterial transcription factor—a protein that binds to specific DNA sequences to control the flow of genetic information from DNA to mRNA—as a means to produce and insert the lactate sensor. They turned the sensor on in three cell types: normal brain cells, tumor brain cells, and human embryonic cells. The sensor was able to quantify very low concentrations of lactate, providing an unprecedented sensitivity and range of detection.
 
The researchers found that the tumor cells produced lactate 3-5 times faster than the non-tumor cells. “The high rate of lactate production in the cancer cell is the hallmark of cancer metabolism,” remarked Frommer. “This result paves the way for understanding the nuances of cancer metabolism in different types of cancer and for developing new techniques for combatting this scourge.”
 
In addition, the biosensors promise to solve an old controversy. While some studies have suggested the glucose provides the fuel for the brain, recent research has provided evidence that lactate feeds energy metabolism in neurons. Oxidation of lactate can be used to produce large amount of ATP—the coenzyme that carries energy in cells. The Barros and Frommer teams are excited about the solving this enigma with the use of their new sensors, together with the previously developed glucose sensors. Recently, a collaboration between the two labs led to the patenting of the first method capable of measuring the rate of glucose consumption in single cells.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,100+ scientific posters on ePosters
  • More than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Loss Of Y Chromosome Increases Risk Of Alzheimer’s
Men with blood cells that do not carry the Y chromosome are at greater risk of being diagnosed with Alzheimer’s disease. This is in addition to an increased risk of death from other causes, including many cancers. These new findings by researchers at Uppsala University could lead to a simple test to identify those at risk of developing Alzheimer’s disease.
Making Virus Sensors Cheap and Simple
Researchers at The University of Texas at Austin demonstrated the ability to detect single viruses in a solution containing murine cytomegalovirus (MCMV).
Heart Defect Prediction Technology Could Lead to Earlier, More Informed Treatment
Experimental method uses genetics-guided biomechanics, patient-specific stem cells.
Biosensor Detects Molecules Linked to Cancer, Alzheimer's and Parkinson's
Novel biosensor has been proven capable of detecting molecules associated with neurodegenerative diseases and some types of cancer.
Big Data Can Save Lives
The sharing of genetic information from millions of cancer patients around the world could be key to revolutionising cancer prevention and care, according to a leading cancer expert from Queen's University Belfast.
Fast, Simple Test for Colitis
A minimally invasive screening for ulcerative colitis using emerging infrared technology could be a rapid and cost-effective method for detecting disease that eliminates the need for biopsies and intrusive testing of the human body.
Scans Reveal Babies of Mothers with Gestational Diabetes Have More Body Fat
Researchers at Imperial College London have found that the babies born to mothers with gestational diabetes have more body fat at two months of age compared to babies born to healthy mothers.
New Device Could Improve Cancer Detection
UBC researchers develop a microfluidic device to capture circulating tumor cells.
Plasma Biomarkers for Breast Cancer Diagnosis
Plasma lipidomics profiling identified lipid biomarkers in distinguishing early-stage breast cancer from benign lesions.
Newborn Screening Test Developed For Rare, Deadly Neurological Disorder
Scientists have developed a new dried blood spot screening test for Niemann-Pick type C, with goal to speed diagnosis and treatment.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,100+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!