Corporate Banner
Satellite Banner
Molecular & Clinical Diagnostics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Device Finds Stray Cancer Cells in Patients’ Blood

Published: Wednesday, April 10, 2013
Last Updated: Wednesday, April 10, 2013
Bookmark and Share
A microfluidic device that captures circulating tumor cells could give doctors a noninvasive way to diagnose and track cancers.

Doctors typically diagnose cancer via a biopsy, which can be invasive and expensive. A better way to diagnose the disease would be to detect telltale tumor cells floating in the bloodstream, but such a test has proved difficult to develop because stray cancer cells are rare, and it’s difficult to separate them from the mélange of cells in circulation.

Now researchers from Massachusetts General Hospital and Harvard Medical School say they’ve built a microfluidic device that can quickly grab nearly any type of tumor cell, an advance that may one day lead to simple blood tests for detecting or tracking cancer.

Similar, existing devices—including earlier versions developed by the authors of the study in Wednesday’s online issue of Science Translational Medicine—depend on tumor-specific biomarkers on the surface of the cells to pull them out of a blood sample, meaning that a given device won’t work for all cancer types. What’s more, the efficiency by which the tumor cells are purified from other cell types is generally low and time-consuming. In a given blood sample, circulating tumor cells are rare—there may be only one tumor cell for every billion cells.

The new device is a “substantial step forward from previous microfluidic devices,” says Peter Kuhn, a circulating-tumor-cell researcher at the Scripps Research Institute. Kuhn was not involved in the study. The device combines existing microfluidic techniques of cell sorting into a single device, he says. The result is that the tumor cells can be pulled out of a blood sample quicker, and without prior knowledge of their molecular characteristics.

Mehmet Toner, director of the BioMicroElectroMechanical Systems Resource Center at MGH, and colleagues report that their latest chip can isolate circulating-tumor cells in the blood, and could apply to all types of cancer. “For our earlier chip, you needed to know something on the surface of the tumor cells,” says Toner. In those devices, a small sample of blood would flow through microfluidic chambers, some of which contained an antibody that grabbed tumor cells. That system also took four to five hours to process a single blood sample. “But for early detection and to make this useful for virtually all cancers, we needed to increase the throughput and to make it [tumor-type] independent,” he says.

Identifying these wandering tumor cells could also help researchers study a cancer’s progression and help doctors track treatments or screen for new cases. By studying the surface proteins or genetic profiles of the cancer cells, doctors and researchers could learn which mutations are present in the cancer and perhaps tailor molecularly targeted treatments accordingly. The authors show that 15 tumor cells were recovered from a blood sample from a prostate cancer patient. The gene expression levels of each cell were studied individually and a mix of mutations was found.

The device developed by Toner’s group combines magnetic labeling of cells and microfluidic sorting to process a sample of blood in about an hour or two. To capture tumor cells regardless of their cancer type, the system first tags white blood cells with magnetic beads that are covered with antibodies that recognize proteins on the surface of the immune cells. The sample is then passed into microfluidic chambers that clear out red blood cells, plasma, and unused free magnetic beads based on their size. Then the device discards the tagged white blood cells using a magnetic field. “In the past, we were focused on tumor cells that we know very little about,” says Toner. “Here, we throw away the cells we know everything about, the blood cells,” he says.

The advantage of the new cell-sorting device over previous attempts is that it successfully brings together multiple technologies, such as size separation and magnetic-tag separation, already used in the field, says Gajus Worthington, president and CEO of Fluidigm, a California company that produces microfluidic devices for biomedical research. “The key thing here is the integration, which is crucial to anything related to single-cell work,” he says. All the steps in Toner’s device take place in similar volumes. “If you have to go from one microstep back to macrostep back to microstep, there are losses and complexity, which leads to noise,” says Worthington.

Toner notes that the Holy Grail for circulating-tumor-cell technology would be to diagnose patients early. “About 10 percent of cancer patients survive if they are diagnosed late, but almost 90 percent survive if they are diagnosed early,” says Toner. But whether or not these circulating tumor cells can be found in early-stage patients is not yet clear, says Luis Diaz, an oncologist at Johns Hopkins University School of Medicine. Diaz was not involved in the study. “Early-stage cancers might release very few cells into circulation,” he says. “That’s historically the problem with circulating tumor cells; you can only find them in advanced cancers.”


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Bacterial Computing
The “friendly” bacteria inside our digestive systems are being given an upgrade, which may one day allow them to be programmed to detect and ultimately treat diseases such as colon cancer and immune disorders.
Monday, July 13, 2015
Chemists Design a Quantum-Dot Spectrometer
New instrument is small enough to function within a smartphone, enabling portable light analysis.
Friday, July 03, 2015
Diagnosing Cancer with Help from Bacteria
Engineered probiotics can detect tumors in the liver.
Friday, May 29, 2015
Using Sound Waves To Detect Rare Cancer Cells
Acoustic device can rapidly isolate circulating tumor cells from patient blood samples.
Tuesday, April 07, 2015
MIT And MGH Form Strategic Partnership
First set of grants support projects designed to improve diagnostic accuracy and cost-effectiveness.
Friday, October 17, 2014
Biologists Find An Early Sign Of Cancer
Patients show boost in certain amino acids years before diagnosis of pancreatic cancer.
Tuesday, September 30, 2014
New Sensor Tracks Zinc in Cells
Shifts in zinc’s location could be exploited for early diagnosis of prostate cancer.
Wednesday, December 11, 2013
New Approach to Global Health Challenges
MIT’s Institute for Medical Engineering and Science brings many tools to the quest for new disease treatments and diagnostic devices.
Friday, September 27, 2013
Brain Scans May Help Diagnose Dyslexia
Differences in a key language structure can be seen even before children start learning to read.
Thursday, August 15, 2013
AAAS Annual Meeting Puts MIT Science and Technology on Display
The 2013 conference, held last week in Boston, featured research presentations, hands-on demonstrations.
Friday, February 22, 2013
Tiny Tools Help Advance Medical Discoveries
MIT researchers are designing tools to analyze cells at the microscale.
Tuesday, January 08, 2013
Improving the Accuracy of Cancer Diagnoses
New spectroscopy technique could help doctors better identify breast tumors.
Tuesday, January 08, 2013
New Technology May Enable Earlier Cancer Diagnosis
Nanoparticles amplify tumor signals, making them much easier to detect in the urine.
Friday, December 21, 2012
Oscillating Microscopic Beads Could be Key to Biolab on a Chip
MIT team finds way to manipulate and measure magnetic particles without contact, potentially enabling multiple medical tests on a tiny device.
Tuesday, September 25, 2012
Mapping Neurological Disease
New algorithm can analyze information from medical images to identify diseased areas of the brain and connections with other regions.
Wednesday, September 05, 2012
Scientific News
Liquid Biopsies: Utilization of Circulating Biomarkers for Minimally Invasive Diagnostics Development
Market Trends in Biofluid-based Liquid Biopsies: Deploying Circulating Biomarkers in the Clinic. Enal Razvi, Ph.D., Managing Director, Select Biosciences, Inc.
Lab-on-a-Chip Offers Promise for TB and Asthma Patients
A device to mix liquids using ultrasonics is the first and most difficult component in a miniaturized system for low-cost analysis of sputum from patients with pulmonary diseases such as tuberculosis and asthma.
Watching a Tumour Grow in Real-Time
Researchers from the University of Freiburg have gained new insight into the phases of breast cancer growth.
Urine Proteins Point to Early-Stage Pancreatic Cancer
A combination of three proteins found at high levels in urine can accurately detect early-stage pancreatic cancer, researchers at the BCI have shown.
Ultrafast DNA Diagnostics
New technology developed by UC Berkeley bioengineers promises to make a workhorse lab tool cheaper, more portable and many times faster by accelerating the heating and cooling of genetic samples with the switch of a light.
Long Telomeres Associated with Increased Lung Cancer Risk
Genetic predisposition for long telomeres predicts increased lung adenocarcinoma risk.
Paving the way to Better Ovarian Cancer Diagnosis
Aïcha BenTaieb will present her invention for automated identification of ovarian cancer’s many subtypes at an international conference this fall.
The Genetic Roots of Adolescent Scoliosis
Scientists at the RIKEN Center for Integrative Medical Sciences in collaboration with Keio University in Japan have discovered a gene that is linked to susceptibility of Scoliosis.
Diagnostic Test Developed for Enterovirus D68
researchers at Washington University School of Medicine in St. Louis have developed a diagnostic test to quickly detect enterovirus D68 (EV-D68), a respiratory virus that caused unusually severe illness in children last year.
Tracking Breast Cancer Before it Grows
A team of scientists led by University of Saskatchewan researcher Saroj Kumar is using cutting-edge Canadian Light Source techniques to screen and treat breast cancer at its earliest changes.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!