Corporate Banner
Satellite Banner
Molecular & Clinical Diagnostics
Scientific Community
Become a Member | Sign in
Home>News>This Article

NIH to Fund Clinical Research Network on Antibacterial Resistance

Published: Thursday, June 06, 2013
Last Updated: Thursday, June 06, 2013
Bookmark and Share
Researchers at Duke University will lead the initiative.

Duke University, Durham, N.C., has been awarded $2 million to initiate a new clinical research network focused on antibacterial resistance.

Total funding for the leadership group cooperative agreement award could reach up to $62 million through 2019. Funding is provided by the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health.

“Antibacterial resistance is a serious and growing public health threat that is endangering the global medical community’s ability to effectively treat conditions ranging from simple skin infections to tuberculosis,” said NIAID Director Anthony S. Fauci, M.D.

Fauci continued, “Through this new clinical research network, we will strengthen our existing research capacity and address the most pressing scientific priorities related to antibacterial resistance.”

Infections with bacteria resistant to antibiotic drugs were first reported more than 60 years ago. Since then, infections with resistant bacteria have become more common in health care and community settings, and many bacteria have become resistant to more than one type or class of antibiotics.

As a result, medical professionals must treat infections with limited treatment options or, in some cases, when no effective antibiotics exist.

Co-led by principal investigators Vance Fowler, M.D., of Duke University, and Henry Chambers, M.D., of the University of California, San Francisco, the leadership group will design, implement and manage the network’s clinical research agenda.

In addition to the two principal investigators, the leadership group will include a consortium of more than 20 investigators nationwide with experience in diverse areas related to antibacterial resistance. The scientific efforts the leadership group is expected to undertake include:

• Conducting early-stage clinical evaluation of new antibacterial drugs
• Performing clinical trials to optimize currently licensed antibacterial drugs to reduce the risk of resistance
• Testing diagnostics
• Examining best practices in infection control programs to prevent the development and spread of resistant infections

An operations center at Duke University will anchor the network and provide administrative and technical support, a laboratory center, and a statistics and data management center.

The network will address the priority areas identified in its clinical research agenda using existing NIAID clinical trials infrastructure, including the clinical trial units that support NIAID’s HIV/AIDS clinical trials networks and Vaccine and Treatment Evaluation Units.

Planning for the development of the new NIAID clinical trials network on antibacterial resistance began in 2010 in connection with a larger effort to restructure NIAID’s HIV/AIDS clinical trials networks.

NIAID conducted extensive consultations with infectious disease researchers, clinicians, nurses, and patient advocates in moving forward with the concept. This award will complement NIAID’s extensive antimicrobial resistance portfolio, which includes clinical research and product development, as well as clinical trials evaluating optimal utilization strategies for currently available antibacterial drugs.

The leadership group award was made through cooperative agreement 1UM1AI104681.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

$21M Invested in Research Hubs in Developing Countries
The National Institutes of Health and other U.S. and Canadian partners are investing $20.9 million dollars over five years to establish seven regional research and training centers in low- and middle-income countries (LMICs).
Friday, October 09, 2015
Scientists Create World’s Largest Catalog of Human Genomic Variation
An international team of scientists from the 1000 Genomes Project Consortium has created the world’s largest catalog of genomic differences among humans, providing researchers with powerful clues to help them establish why some people are susceptible to various diseases.
Thursday, October 01, 2015
NIH Framework Points The Way Forward For Developing The President’s Precision Medicine Initiative
The NIH Advisory Committee to the Director has presented to NIH Director Francis S. Collins, M.D., Ph.D., a detailed design framework for building a national research participant group, called a cohort, of 1 million or more Americans to expand our knowledge and practice of precision medicine.
Monday, September 21, 2015
Undiagnosed Diseases Network Launches Online Application Portal
UDN Gateway enables patients to apply to national network of clinical sites.
Thursday, September 17, 2015
Using Genetic Sequencing to Manage Cancer in Children
A team of scientists have investigated the feasibility of incorporating clinical sequencing information into the care of young cancer patients.
Tuesday, September 15, 2015
Hastings Center Awarded NIH Grant
Funding has been awarded for a major project on goals and practices of next-generation prenatal testing.
Monday, September 14, 2015
NIH Grants Seek Best Ways To Combine Genomic Information and EHRs
Researchers seek to better understand genomic basis of disease, provide tailored care to patients.
Friday, September 04, 2015
Tumor DNA in Blood Reveals Lymphoma Progression
Using an advanced genetic test, researchers were able to detect diffuse large B-cell lymphoma (DLBCL) in blood serum before it could be seen on CT scans.
Tuesday, April 14, 2015
NIH Funds Nine Antimicrobial Resistance Diagnostics Projects
Investigators to develop tools to detect hospital-associated pathogens.
Friday, April 10, 2015
NIH Launches Tool to Advance Down Syndrome Research
Web portal will help approved professionals to plan clinical studies.
Wednesday, January 28, 2015
Sophisticated HIV Diagnostics Adapted For Remote Areas
New tool is low-cost, with no electricity needed.
Tuesday, December 02, 2014
NIH Names New Clinical Sites in Undiagnosed Diseases Network
Four-year, $43 million initiative engages broad expertise in study of mystery conditions.
Wednesday, July 02, 2014
Genetic Disorder Causing Strokes, Vascular Inflammation in Children Discovered
NIH researchers have identified gene variants that cause a rare syndrome of sporadic fevers, skin rashes and recurring strokes, beginning early in childhood.
Thursday, February 20, 2014
NIH, Industry and Non-Profits Join Forces to Speed Validation of Disease Targets
Goal is to develop new treatments earlier, beginning with Alzheimer's, type 2 diabetes, and autoimmune disorders.
Tuesday, February 11, 2014
Speeding Validation of Disease Targets
NIH, industry and non-profits join forces to develop new treatments earlier, beginning with Alzheimer’s, type 2 diabetes, and autoimmune disorders.
Tuesday, February 04, 2014
Scientific News
When it Comes to Breast Cancer, Common Pigeon is No Bird Brain
If pigeons went to medical school and specialized in pathology or radiology, they’d be pretty good at distinguishing digitized microscope slides and mammograms of normal vs. cancerous breast tissue, a new study has found.
Mathematical Model Forecasts the Path of Breast Cancer
Chances of survival depend on which organs breast cancer tumors colonize first.
Measuring microRNAs in Blood to Speed Cancer Detection
A simple, ultrasensitive microRNA sensor holds promise for the design of new diagnostic strategies and, potentially, for the prognosis and treatment of pancreatic and other cancers.
Biomedical Imaging at One-Thousandth the Cost
Mathematical modeling enables $100 depth sensor to approximate the measurements of a $100,000 piece of lab equipment.
Improving Outcomes for Lung Cancer and Diabetic Patients
Novel technologies have been developed with support from SBRI Healthcare funding.
New Way of Detecting Cancer
A new RNA test of blood platelets can be used to detect, classify and pinpoint the location of cancer by analysing a sample equivalent to one drop of blood.
Rapid, Portable Ebola Diagnostic
Scientists confirmed the efficiency of the novel Ebola detection method in field trials.
New, Better Test for Prostate Cancer
A study from Karolinska Institutet shows that a new test for prostate cancer is better at detecting aggressive cancer than PSA.
Blood Test Picks Out Prostate Cancer Drug Resistance
Scientists have developed a blood test that can identify key mutations driving resistance to a widely used prostate cancer drug, and identify in advance patients who will not respond to treatment.
Antibody Targets Key Cancer Marker
University of Wisconsin-Madison researchers have created a molecular structure that attaches to a molecule on highly aggressive brain cancer and causes tumors to light up in a scanning machine.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos