Satellite Banner
Molecular & Clinical Diagnostics
Scientific Community
Become a Member | Sign in
Home>News>This Article

Oxford Optronix Launches Tissue Oxygenation and Blood Flow Monitoring Systems

Published: Monday, July 08, 2013
Last Updated: Monday, July 08, 2013
Bookmark and Share
OxyLite™ Pro and OxyFlo™ Pro systems combine to deliver an advanced and unique tissue vitality monitoring platform.

Oxford Optronix has announced the formal launch of its next-generation OxyLite™ Pro and OxyFlo™ Pro systems for tissue oxygenation and blood flow monitoring - delivering the most advanced tissue vitality monitoring platform on the market.

This latest release marks the third generation of the company’s OxyLite™ and OxyFlo™ brand systems, first launched in 1991.

The OxyLite and OxyFlo systems are unique modular instruments that utilize fibre-optic micro-sensors to provide real-time measurements of local tissue oxygenation (ptiO2), tissue blood perfusion (blood flow) and tissue temperature.

These instruments, which are designed to be used either individually or ‘in-tandem’ for simultaneous measurements of tissue oxygenation, blood flow and temperature, are widely used across the globe in areas of biomedical research concerned with hypoxia and ischaemia.

With oxygen sensors based on optical fluorescence technology - pioneered at Oxford Optronix - OxyLite™ Pro is a two- or four-channel oxygen and temperature monitoring instrument that provides continuous, quantitative and high-sensitivity monitoring of oxygen availability to cells and tissue.

This touch-screen based system is remarkably easy to use and is specifically targeted at oxygen measurements in the physiological range, as well as under conditions of hypoxia, offering application in research areas including tumour oxygen monitoring/angiogenesis; cerebral oxygen monitoring in models of stroke and brain injury; vital organ and muscle tissue monitoring; flap monitoring; ophthalmology; wound healing, fMRI-validation techniques; and in-vitro dissolved oxygen monitoring in cell culture and bioreactors.

OxyFlo™ Pro is the company’s third-generation, two- or four-channel laser-Doppler tissue blood flow monitoring instrument.

Oxford Optronix is a pioneer in the development of laser-Doppler based blood flow monitoring (LDF) technology and its latest touch-screen, high-performance system sets a new standard in sensitivity and ease of use.

An ideal system for measuring changing tissue blood flow in acute experimental models, OxyFlo™ Pro offers applications in peripheral vascular disorders; cerebral perfusion monitoring in models of stroke and brain injury; tumour perfusion monitoring/angiogenesis; blood flow in free flaps and pedicle flaps; wound healing; and gastroenterology.

Commenting on the combined system, Dr Hai-Ling Margaret Cheng of University of Toronto, Hospital for Sick Children in Canada said: “In our studies on the response to gas inhalation in abdominal organs, OxyLite and OxyFlo allowed us to monitor tissue pO2 and perfusion response simultaneously in the liver and kidney. No other minimally invasive system could capture dynamic changes with such fine temporal resolution, and no other system could provide concurrent pO2 and perfusion measurement in multiple tissue regions. Oxford Optronix enabled us to understand the physiological phenomena underlying our magnetic resonance imaging measurements. It is truly a powerful, must-have technology.”

Andy Obeid PhD, CEO of Oxford Optronix added: “The release of our new OxyLite™ Pro and OxyFlo™ Pro systems is the culmination of 5 years of continued product development in this area for us.”

He added: “We work closely with our customers to develop targeted solutions that offer unmatched sensitivity, stability and accuracy coupled with total ease-of-use. The introduction of our third-generation platform, enables us to continue providing the ‘gold-standard’ in tissue vitality monitoring that our customers have come to expect.”

Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More than 5,100+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Scientific News
Point of Care Diagnostics - A Cautious Revolution
Advances in molecular biology, coupled with the miniaturization and improved sensitivity of assays and devices in general, have enabled a new wave of point-of-care (POC) or “bedside” diagnostics.
Signaling Pathway Could Be Key to Improved Osteoporosis Treatment
Inhibition of SIK2 enzyme both stimulates bone formation and reduces bone breakdown in animal model.
Supercomputers Could Improve Cancer Diagnostics
Researchers push the boundaries of cancer research through high-performance computing to map the human immunone.
Transgenomic, Precipio Diagnostics Merger
Merger will creates a robust diagnostic platform focused on improving accuracy of cancer diagnoses.
Inflammation Test May Predict Cardiovascular Disease
An assessment combining measures of immune-cell responsiveness predicted cardiovascular problems in individuals who likely would have slipped under the radar.
3D-Printing in Science: Conference Co-Staged with LABVOLUTION
LABVOLUTION 2017 will have an added highlight of a simultaneous conference, "3D-Printing in Science".
Potential Urine Test for CJD
Researchers at the Medical Research Council (MRC) Prion Unit at UCL have found that it may be possible to determine whether or not a person has sporadic Creutzfeldt-Jakob Disease (sCJD) by testing their urine for the presence of abnormal prion proteins.
ReadCoor Launched to Commercialize 3D Sequencing Tech
ReadCoor will leverage the Wyss Institute’s method for simultaneously sequencing and mapping RNAs within cells and tissues to advance development of diagnostics.
Crispr Toolbox Expanded By Protein
Researchers have shown a newly discovered CRISPR protein has two distinct RNA cutting activities.
Heart Arrhythmia Caused by Mosaic of Mutant Cells
Researchers have solved the genetic mystery of an infant suffering from heart arrhythmia.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,100+ scientific videos