Corporate Banner
Satellite Banner
Molecular & Clinical Diagnostics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Technological Breakthrough Paves the Way for Better Drugs

Published: Monday, July 08, 2013
Last Updated: Monday, July 08, 2013
Bookmark and Share
Researchers have developed the first method for directly measuring the extent to which drugs reach their targets in the cell.

The method, which is described in the scientific journal Science, could make a significant contribution to the development of new, improved drug substances.

Most drugs operate by binding to one or more proteins and affecting their function, which creates two common bottlenecks in the development of drugs; identifying the right target proteins and designing drug molecules able to efficiently seek out and bind to them. No method has been available for directly measuring the efficiency of the drug molecules to locate and bind to its target protein. Now researchers from Karolinska Institutet have developed a new tool called CETSA (Cellular Thermal Shift Assay), which utilise the concept that target proteins usually get stabilised when drug molecules bind.

"We have shown that the method works on a wide variety of target proteins and allows us to directly measure whether the drug molecules reach their targets in cells and animal models," says lead investigator Professor Pär Nordlund of the Department of Medical Biochemistry and Biophysics. "We believe that CETSA will eventually help to improve the efficiency of many drugs and contribute to better drug molecules and more successful treatments."

The lack of methods to directly measure the binding of a drug to its target protein has caused a degree of uncertainty in many phases of drug development. In some cases, where drug candidates have not lived up to expectations in clinical trials on humans, it has transpired that the drug molecules have failed to bind to the right protein. The group behind the study believes that CETSA will be an important control stage and a complement to other methods.

In the present study, the researchers also examined processes that can lead to drug resistance in cells. The team believes that by virtue of its ability to determine whether existing drugs are suitable for individual patients, the method is of potential value to the practice of individualised treatment.

"We believe that the method can provide an important diagnostic tool in the treatment of cancer, for example, as CETSA can, in principle, enable us to determine which drug is most effective at targeting the proteins in the tumour," says Daniel Martinez Molina at the Department of Medical Biochemistry and Biophysics, who leads a team in the project aiming at establishing CETSA for patient studies. "This also makes it possible for clinicians to ascertain at an early stage of treatment whether the tumour has developed a certain kind of resistance and which type of therapy could then be more suitable for the patient."

The evaluation of CETSA has been conducted in collaboration with Yihai Cao's research group at the Department of Microbiology,Tumor and Cell Biology at Karolinska Institutet, Pelago Bioscience AB and Nanyang Technological University in Singapore. Professor Pär Nordlund and Dr Daniel Martinez Molina are two of the founders of the company, which was also involved in the study. The project was financed by external grants from the Swedish Research Council, the Swedish Cancer Society and the European Research Council (ERC).


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,300+ scientific posters on ePosters
  • More than 5,000+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

A New Method Simplifies Blood Biomarker Discovery And Analysis
Scientists at Karolinska Institutet in collaboration with Estonian Competence Centre on Health Technologies have developed a new gene expression analysis method to widen the usage of blood in biomarker discovery and analysis.
Tuesday, August 16, 2016
New Mechanism Discovered Behind Infant Epilepsy
Scientists at Karolinska Institutet and Karolinska University Hospital have discovered a new explanation for severe early infant epilepsy.
Monday, September 07, 2015
Scientific News
AACC 2016 Sees Clinical Chemistry Labs Drive Precision Medicine Offerings
Biomarker assays to enable precision medicine and risk assessment, mass spec-based tests designed for use in clinical labs large and small, and liquid biopsy technology captured the spotlight at the AACC annual meeting.
New Strategy Holds Promise for Detecting Bacterial Infections
The NIH study could improve diagnosis, treatment for infants with fevers.
Neurodvelopmental Disorder Cause Linked to SON Gene
A genetic link has been discovered for a previously unxplained neurodevelopmental disorder.
World's Most In-Depth Study to Detect Alzheimer's Disease
A multisite team will see the most thorough and vigorous testing for Alzheimer's ever performed on volunteers.
Personalised Medicine: Dose by Design
Personalised medicine holds the promise of a new approach to healthcare, tailored exactly to our individual needs, as Congenica's Nick Lench discussed on a recent BBC Radio 4 programme.
Misdiagnosis in HCM Tests
Genetic tests for potentially fatal heart anomaly can misdiagnose condition in black Americans.
Computers Better Predict Lung Cancer Type, Severity
Study shows automating the analysis of cancer tissue samples increases the accuracy of tumor classification and patient prognoses.
Examining New Hypotheses for Undiagnosed Patients
UnDx Consortium gathers in San Diego to create new paths to identifying currently undiagnosed illnesses.
Automating Genetic Analysis
Researchers are looking to have computers help perform genetic analysis when scientists study a patient's genome to diagnose a disease.
Understanding Tumor Evolution
Study provides insight into tumor evolution; may point to improved diagnosis and treatment.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,300+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,000+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!