Corporate Banner
Satellite Banner
Molecular & Clinical Diagnostics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Trial Aims to Advance Prenatal Diagnosis of Genetic Defects

Published: Thursday, August 22, 2013
Last Updated: Thursday, August 22, 2013
Bookmark and Share
High-risk pregnant women being recruited for research on chromosomal abnormalities and incidence of birth defects, developmental delays.

Reproductive genetics researchers at Columbia University Medical Center (CUMC) are leading a multicenter prospective clinical study investigating the effects of chromosomal abnormalities (duplicative or missing material) found prenatally through microarray analysis. The goal of the study is to gain further information on genetic variances previously not well reported in the medical literature and share it with parents during pregnancy.

Led by principal investigator Ronald J. Wapner, MD, professor and vice chair for research at CUMC’s Department of Obstetrics and Gynecology and director of reproductive genetics at NewYork-Presbyterian Hospital/Columbia, the research is the next phase of a project to advance clinicians’ ability to diagnose in utero conditions such as developmental delays, structural abnormalities, and treatable or life-threatening diseases.

“Parents of children found to have a genetic variance want a better understanding of what it means. Our goal is to give them as much information and support as possible—from detailed genetic counseling to ways to connect with other people expecting children with the same variance,” said Dr. Wapner.

In December 2012, Dr. Wapner and colleagues published in the New England Journal of Medicine (NEJM) findings of a trial involving 4,400 patients at 29 centers nationwide. That study showed that microarray analysis of a fetus’s DNA gave significantly more clinically relevant information than the standard method of analysis, known as karyotyping—a visual analysis of the fetus’s chromosomes.

In the current study—which has ongoing clinical recruitment—data on babies included in the NEJM article will be augmented by data on patients recruited by 10 major prenatal diagnostic centers around the country that offer microarray to all their patients. Each center aims to recruit 1,000 patients. Of the anticipated 10,000 or so microarray analyses, the researchers aim to follow 300–600 children born with genetic variances, for at least three years.

“While the majority of abnormalities found with microarray are associated with known conditions, in many cases the full implications of findings are not well understood, and about 1.5 percent are unidentified. The goal is to fill in these knowledge gaps,” said Dr. Wapner.

“When we counsel parents now, we can give them only limited information, drawn from what we know about children who have undergone genetic testing. But these children often represent the severe end of the spectrum,” said Dr. Wapner. “There might be people who, because they had no symptoms, were never identified as having a variance, limiting the prognostic information we are able to give parents.”

NewYork-Presbyterian/Columbia is the primary recruitment center. The other centers participating in the study are: the Center for Fetal Medicine, Northwestern University, Cedars Sinai Medical Center, San Francisco Perinatal, Carnegie Hill Imaging, Montefiore Medical Center, Mount Sinai Medical Center, Lenox Hill, and North Shore LIJ.

A majority of the labs in the country that do prenatal microarray have agreed to refer patients to the website, where they will be able to self-enroll in the study. “We hope to capture almost all the available microarray data,” said Dr. Wapner.

Website to Collect, Share Information in Real Time with Parents, Clinicians

Trial data will be collected and shared in real time with parents and clinicians via the website www.prenatalarray.org, where expectant parents undergoing testing can learn how microarray works and what it looks for; parents of a child with a variance can find information about their baby’s variance and connect with other parents of babies with the same variance; and physicians, genetic counselors, and other clinicians can input and research real-time information on the clinical impact of the variance.

“We will link genetic anomalies with structural abnormalities—connecting the genotype (the genetics, or errors) with the phenotype (what you see),” said Dr. Wapner. “This will help us to better understand the basis of birth defects—things that run together, what genes to look for, and so on.”

Software to better categorize ultrasound findings and relate them to the phenotype is provided by a genetics software-as-a-service company called Cartagenia, a collaborator on this work. As medical science continues to advance, Dr. Wapner and his colleagues hope and expect that this data pool (and web tracking system) will continue to improve genetic surveillance.

A web-based portal designed and hosted by David Ledbetter, PhD, and W. Andrew Faucett, MS, collaborators at Geisinger Health System in Danville, Pa., enables secure two-way communication with patients. This allows researchers to conduct surveys about patients’ attitudes and opinions about testing; it can also help them to understand how the patients dealt with learning that their child has a genetic variance.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Mutation Linked to Congenital Urinary Tract Defects
Findings point to new diagnostic category.
Thursday, July 18, 2013
Ultrasound Eases Arthritis Diagnosis
For patients with painful joints, getting a proper diagnosis can be an arduous and confusing process. Just waiting for a referral to a specialist can take weeks.
Monday, April 08, 2013
Scientific News
Long Telomeres Associated with Increased Lung Cancer Risk
Genetic predisposition for long telomeres predicts increased lung adenocarcinoma risk.
Paving the way to Better Ovarian Cancer Diagnosis
Aïcha BenTaieb will present her invention for automated identification of ovarian cancer’s many subtypes at an international conference this fall.
The Genetic Roots of Adolescent Scoliosis
Scientists at the RIKEN Center for Integrative Medical Sciences in collaboration with Keio University in Japan have discovered a gene that is linked to susceptibility of Scoliosis.
Diagnostic Test Developed for Enterovirus D68
researchers at Washington University School of Medicine in St. Louis have developed a diagnostic test to quickly detect enterovirus D68 (EV-D68), a respiratory virus that caused unusually severe illness in children last year.
Tracking Breast Cancer Before it Grows
A team of scientists led by University of Saskatchewan researcher Saroj Kumar is using cutting-edge Canadian Light Source techniques to screen and treat breast cancer at its earliest changes.
The Light of Fireflies for Medical Diagnostics
EPFL scientists have exploited the light of fireflies in a new method that detects biological molecules without the need for complex devices and high costs.
Could a simple saliva test detect Alzheimer's?
Researchers have presented findings suggesting that a simple, non-invasive diagnostic for Alzheimer's could be within reach.
Cheap Diagnostics with a Portable "Paper Machine"
Scientists have developed a cheap, portable system for point of care diagnostics for a range of infectious diseases, genetic conditions and cancer.
New Variant of Streptococcal Bacteria
Scientists have discovered a new variant of streptococcal bacteria that has contributed to a rise in disease cases in the UK over the last 17 years.
New Insights into “Antenna” of Human Cells
Scientists from the University of Leeds have uncovered the most comprehensive list yet of genes implicated in a group of common inherited diseases.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!