Corporate Banner
Satellite Banner
Molecular & Clinical Diagnostics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Scientists Discover New Biological Marker for Parkinson's Disease

Published: Friday, September 20, 2013
Last Updated: Friday, September 20, 2013
Bookmark and Share
Researchers discover new biological indicator to track Parkinson’s disease using powerful MRI scanners.

Researchers in Nottingham have discovered a new biological indicator which could potentially help to track the progress of Parkinson’s disease using powerful MRI scanners.

Using highly sensitive new brain imaging techniques, scientists from The University of Nottingham and clinicians at Nottingham University Hospitals NHS Trust have discovered a measurable trait on the human brain which could be used not only to diagnose the condition but potentially also to track progression of the disease.

Parkinson’s develops when dopamine producing nerve cells in the brain die. Current diagnostic imaging tests using nuclear medical techniques are costly and cannot be used to monitor disease progression.

There has been a need for such imaging tracking in Parkinson’s disease to allow for the development of neuroprotective drugs through clinical trials.

In a paper published in the journal Neurology, the Nottingham researchers led by Penny, Gowland, Professor of Physics, reveal that this new discovery could potentially lead to a new diagnostic test for the disease.

Professor Gowland, who is based at the University’s Sir Peter Mansfield Magnetic Resonance Centre, said: “When conducting a different study of patients with Parkinson’s, by using a 7T MRI scanner (which is an extremely powerful MRI scanner), we discovered a mark which looked like a ‘tear drop’ on the brains of healthy subjects, and this was not visible in the brains of patients. In subsequent post mortem scans, we actually discovered that this was something called nigrosome 1. It was known from previous post mortem work that nigrosome 1 could not be found in brains of Parkinson’s disease patients.

‘So this was a breakthrough discovery in that we now know that using this particularly sensitive MRI scanner, we can see that patients living with Parkinson’s disease don’t have this particular feature in their brain.”

Now, researchers will take their findings and look into how this discovery can be translated into standard MRI scans used in most hospitals.

Professor Gowland added: “We are now conducting a study of patients with Parkinson’s to ascertain when this mark actually disappears, which could potentially have huge implications for early diagnosis of the illness, and subsequently how it is treated.”

Dr Nin Bajaj, Associate Honorary Clinical Professor in Neurology at Nottingham University Hospitals NHS Trust, said: “By using highly accurate and sensitive brain imaging techniques for Parkinson’s we are able to get an insight into the mechanism that causes the disease for the first time.

“We have been trying to find a biological marker for Parkinson’s for many years and the reason is that we need a tool to measure change in the disease in clinical trials in a very sensitive way. This discovery is a step change in Parkinson’s disease, it’s a game changer as they say and the implications are potentially huge.”

A full copy of the research paper can be viewed on the Neurology website. The research involved academics at The University of Nottingham’s Sir Peter Mansfield Magnetic Resonance Centre, Division of Radiological and Imaging Sciences and School of Psychology in collaboration with the Divisions of Pathology and Neurology at Nottingham University Hospitals NHS Trust.

The work was funded by the Medical Research Council and the Engineering and Physical Sciences Research Council (EPSRC).

The Sir Peter Mansfield Magnetic Resonance Centre is named after The University of Nottingham professor who played a central role in the development of MRI technology which revolutionized diagnostic medicine in hospitals around the world.

His contribution to the discovery earned him the Nobel Prize for Medicine in 2003.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,000+ scientific posters on ePosters
  • More than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
AACR 2016: Cancer Immunotherapy and Beyond
At this year's meeting there was a palpable buzz around subjects ranging from microbiomics to the tumor microenvironment and cancer vaccines, big data to in vitro and in vivo modeling and drug delivery (to name just a few).
Newborn Screening Test Developed For Rare, Deadly Neurological Disorder
Scientists have developed a new dried blood spot screening test for Niemann-Pick type C, with goal to speed diagnosis and treatment.
New Autism Blood Biomarker Identified
Researchers at UT Southwestern Medical Center have identified a blood biomarker that may aid in earlier diagnosis of children with autism spectrum disorder, or ASD.
Autism, Cancer Share a Remarkable Number of Risk Genes
Researchers with the UC Davis Comprehensive Cancer Center, MIND Institute identify more than 40 common genes.
Number Of Known Genetic Risk Factors For Endometrial Cancer Doubled
An international collaboration of researchers has identified five new gene regions that increase a woman’s risk of developing endometrial cancer, one of the most common cancers to affect women, taking the number of known gene regions associated with the disease to nine.
Five New Breast Cancer Genes Found
Discovery of mutations paves the way for personalised treatment of breast cancer.
Releasing Cancer Cells for Better Analysis
A new device developed at the University of Michigan could provide a non-invasive way to monitor the progress of an advanced cancer treatment.
Releasing Cancer Cells for Better Analysis
A new device developed at the University of Michigan could provide a non-invasive way to monitor the progress of an advanced cancer treatment.
Magnetic Nanoparticles May Reveal Early Traces Of Cancer
Rice University students’ computer program aids MD Anderson diagnostic initiative .
New Blood Test for The Earlier Diagnosis of Breast Cancer Spread
Researchers at University of Westminster have confirmed that a new blood test can detect if breast cancer has spread to other parts of the body.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!