Corporate Banner
Satellite Banner
Molecular & Clinical Diagnostics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Hamamatsu Photonics New Upgraded High Performance MPPC Detectors

Published: Friday, September 20, 2013
Last Updated: Friday, September 20, 2013
Bookmark and Share
New detectors utilize a Geiger-mode pixelated avalanche photodiode structure.

Hamamatsu Photonics has introduced a completely updated range of Multi-Pixel Photon Counter (MPPC) detectors.

Hamamatsu’s already highly regarded MPPC technology has found uses in various applications from medical physics and high energy physics to general optical measurement applications.

A new catalogue has been released detailing the numerous performance improvements to both the bare devices and to the high performance modules.

The MPPC detectors utilize a Geiger-mode pixelated avalanche photodiode structure for ultra-low-level light detection.

Each pixel contains a quenching circuit so that simultaneous photon events can be counted separately and with a high degree of accuracy.

The detectors feature typical gain values from 250,000 to several million, depending on the specific device. The MPPC detectors also feature high photon detection efficiency from 320nm to 900nm.

Unlike traditional photomultiplier tubes (PMT) the MPPC can be operated at low voltage (less than 80 Volts) and they are insensitive to magnetic fields.

Some key areas of improvement to the MPPC include; greatly reduced dark count, reduced after pulsing, increased photon detection efficiency, improvements in timing resolution and linearity as well as reduced crosstalk.

The result of these and other improvements means that the MPPC now has a much improved signal-to-noise ratio, wider operating voltage range, improved time resolution and a wider dynamic range.

As well as these improvements to the product range, there are also multiple new bare and modular solutions not previously offered.

For example, Hamamatsu now offers a single pixel module; effectively taking a single MPPC pixel, of 50µm or 100µm diameter, and housing this within a cooled module. Dark counts as low as 7cps are easily achievable in this way!

These improvements and the various new detector options mean the MPPC is now a serious contender to conventional photon counting devices in many more applications.

The MPPC is ideally suited to a wide range of applications including positron emission tomography, high-energy physics, DNA sequencing, fluorescence measurement, nuclear medicine, point of care systems, drug discovery, medical diagnostic equipment and environmental analysis among many more.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,100+ scientific posters on ePosters
  • More than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Grant Supports Project To Develop Simple Test To Screen For Cervical Cancer
UCLA Engineering announces funding from Bill and Melinda Gates Foundation.
Loss Of Y Chromosome Increases Risk Of Alzheimer’s
Men with blood cells that do not carry the Y chromosome are at greater risk of being diagnosed with Alzheimer’s disease. This is in addition to an increased risk of death from other causes, including many cancers. These new findings by researchers at Uppsala University could lead to a simple test to identify those at risk of developing Alzheimer’s disease.
Making Virus Sensors Cheap and Simple
Researchers at The University of Texas at Austin demonstrated the ability to detect single viruses in a solution containing murine cytomegalovirus (MCMV).
Heart Defect Prediction Technology Could Lead to Earlier, More Informed Treatment
Experimental method uses genetics-guided biomechanics, patient-specific stem cells.
Biosensor Detects Molecules Linked to Cancer, Alzheimer's and Parkinson's
Novel biosensor has been proven capable of detecting molecules associated with neurodegenerative diseases and some types of cancer.
Big Data Can Save Lives
The sharing of genetic information from millions of cancer patients around the world could be key to revolutionising cancer prevention and care, according to a leading cancer expert from Queen's University Belfast.
Fast, Simple Test for Colitis
A minimally invasive screening for ulcerative colitis using emerging infrared technology could be a rapid and cost-effective method for detecting disease that eliminates the need for biopsies and intrusive testing of the human body.
Scans Reveal Babies of Mothers with Gestational Diabetes Have More Body Fat
Researchers at Imperial College London have found that the babies born to mothers with gestational diabetes have more body fat at two months of age compared to babies born to healthy mothers.
New Device Could Improve Cancer Detection
UBC researchers develop a microfluidic device to capture circulating tumor cells.
Plasma Biomarkers for Breast Cancer Diagnosis
Plasma lipidomics profiling identified lipid biomarkers in distinguishing early-stage breast cancer from benign lesions.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,100+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!