Corporate Banner
Satellite Banner
Molecular & Clinical Diagnostics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Quantity, Not Just Quality, in New Stanford Brain Scan Method

Published: Wednesday, November 06, 2013
Last Updated: Wednesday, November 06, 2013
Bookmark and Share
Researchers used magnetic resonance imaging to quantify brain tissue volume, a critical measurement of the progression of multiple sclerosis and other diseases.

Imagine that your mechanic tells you that your brake pads seem thin, but doesn't know how long they will last. Or that your doctor says your child has a temperature, but isn't sure how high. Quantitative measurements help us make important decisions, especially in the doctor's office. But a potent and popular diagnostic scan, magnetic resonance imaging (MRI), provides mostly qualitative information.

An interdisciplinary Stanford team has now developed a new method for quantitatively measuring human brain tissue using MRI. The team members measured the volume of large molecules (macromolecules) within each cubic millimeter of the brain. Their method may change the way doctors diagnose and treat neurological diseases such as multiple sclerosis.

"We're moving from qualitative – saying something is off – to measuring how off it is," said Aviv Mezer, postdoctoral scholar in psychology. The team's work, funded by research grants from the National Institutes of Health, appears in the journal Nature Medicine.

Mezer, whose background is in biophysics, found inspiration in seemingly unrelated basic research from the 1980s. In theory, he read, magnetic resonance could quantitatively discriminate between different types of tissues.

"Do the right modifications to make it applicable to humans," he said of adapting the previous work, "and you've got a new diagnostic."

Previous quantitative MRI measurements required uncomfortably long scan times. Mezer and psychology Professor Brian Wandell unearthed a faster scanning technique, albeit one noted for its lack of consistency.

"Now we've found a way to make the fast method reliable," Mezer said.

Mezer and Wandell, working with neuroscientists, radiologists and chemical engineers, calibrated their method with a physical model – a radiological "phantom" – filled with agar gel and cholesterol to mimic brain tissue in MRI scans.

The team used one of Stanford's own MRI machines, located in the Center for Cognitive and Neurobiological Imaging, or CNI. Wandell directs the two-year-old center. Most psychologists, he said, don't have that level of direct access to their MRI equipment.

"Usually there are many people between you and the instrument itself," Wandell said.
This study wouldn't have happened, Mezer said, without the close proximity and open access to the instrumentation in the CNI.

Their results provided a new way to look at a living brain.

MRI images of the brain are made of many "voxels," or three-dimensional elements. Each voxel represents the signal from a small volume of the brain, much like a pixel represents a small volume of an image. The fraction of each voxel filled with brain tissue (as opposed to water) is called the macromolecular tissue volume, or MTV. Different areas of the brain have different MTVs. Mezer found that his MRI method produced MTV values in agreement with measurements that, until now, could only come from post-mortem brain specimens.

This is a useful first measurement, Mezer said. "The MTV is the most basic entity of the structure. It's what the tissue is made of."

The team applied its method to a group of multiple sclerosis patients. MS attacks a layer of cells called the myelin sheath, which protects neurons the same way insulation protects a wire. Until now, doctors typically used qualitative MRI scans (displaying bright or dark lesions) or behavioral tests to assess the disease's progression.

Myelin comprises most of the volume of the brain's "white matter," the core of the brain. As MS erodes myelin, the MTV of the white matter changes. Just as predicted, Mezer and Wandell found that MS patients' white matter tissue volumes were significantly lower than those of healthy volunteers. Mezer and colleagues at Stanford School of Medicine are now following up with the patients to evaluate the effect of MS drug therapies. They're using MTV values to track individual brain tissue changes over time.

The team's results were consistent among five MRI machines.

Mezer and Wandell will next use MRI measurements to monitor brain development in children, particularly as the children learn to read. Wandell's previous work mapped the neural connections involved in learning to read. MRI scans can measure how those connections form.

"You can compare whether the circuits are developing within specified limits for typical children," Wandell said, "or whether there are circuits that are wildly out of spec, and we ought to look into other ways to help the child learn to read."

Tracking MTV, the team said, helps doctors better compare patients' brains to the general population – or to their own history – giving them a chance to act before it's too late.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,300+ scientific posters on ePosters
  • More than 4,900+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Imaging Cells and Tissues Under the Skin
First technique developed for viewing cells and tissues in three dimensions under the skin.
Tuesday, March 22, 2016
Ultra-Sensitive Test for Cancers, HIV
Test developed that is thousands of times more sensitive than current diagnostics.
Tuesday, March 15, 2016
Blood Test Could Transform TB Diagnosis
A simple blood test that can accurately diagnose active tuberculosis could make it easier and cheaper to control a disease that kills 1.5 million people every year.
Tuesday, February 23, 2016
Researchers Develop qPCR Prognosis Test for NSCLC Patients
A nine-gene molecular prognostic index (MPI) for patients with early-stage non-small cell lung cancer (NSCLC) was able to provide accurate survival stratification and could potentially inform the use of adjuvant therapy in patients struggling with the disease.
Thursday, August 20, 2015
Identifying Defective Heart Genes
A new technique could eventually enable doctors to diagnose genetic heart diseases by rapidly scanning more than 85 genes known to cause cardiac anomalies.
Thursday, August 13, 2015
Genetic Signature Enables Early, Accurate Sepsis Diagnosis
Systemic inflammation after injuries or surgery can dramatically alter the activity of thousands of genes, but a new study shows that changes in just 11 of them are enough to detect the presence or absence of accompanying infection.
Monday, May 18, 2015
Beaming Power To Medical Chips Deep Inside The Body
A Stanford electrical engineer has invented a way to wirelessly transfer power deep inside the body.
Tuesday, May 20, 2014
Scientific News
Detecting Alzheimer's with Smell Test
Odour identification test may offer low-cost alternative for predicting cognitive decline and detecting early-stage Alzheimer’s disease.
CDC Updates Zika Recommendations
CDC has issued updated Zika recommendations and guidance for healthcare providers with a focus on sexual transmission.
Review of the Analysis of Haemoglobin A1c for Diabetes Diagnostics
This paper aims to clarify methods, units, quality requirements, reference and cutoff limits for hemoglobin A1c (HbA1c) and ratio of blood glucose/HbA1c on the basis of the results from Finnish quality control surveys by comparing them to the literature.
Colon Cancer Blocked in Mice
Case Western Reserve University Researchers block common type of colon cancer tumour in mice, laying groundwork for human clinical trial.
Drug - Gene 'One-Two' Punch Against Cancer
Researchers identify gene-drug combinations that, together, target and kill cancer cells while not targeting healthy cells.
Liquid Biopsies Treating Ovarian Cancer
Researchers have discovered a promising monitor and treat recurrence of ovarian cancer. Detecting cancer long before tumours reappear.
72% Rise in Metastatic Prostate Cancer
Over the 2003-2013 period metastatic cancer has increased by an average of 72%, this could be caused by lax screening, more aggressive disease or both.
Lab-Tested Diagnosis Needed When Treating Persistent Diarrhea
New PCR multiplex method makes lab testing more effective.
Biomarker for Multiple Sclerosis Detection Discovered
Winthrop-University Hospital researchers discover biomarker for multiple sclerosis detection.
Scientists Link Bipolar Disorder to Unexpected Brain Region
Researchers from The Scripps Research Institute have found that gene within the brain’s striatum could be linked to biopolar disorder.
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,300+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,900+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!