Corporate Banner
Satellite Banner
Environmental Analysis
Scientific Community
Become a Member | Sign in
Home>News>This Article

UCLA Engineers Create Cell Phone-Based Sensor for Detection of E. coli

Published: Thursday, March 01, 2012
Last Updated: Thursday, March 01, 2012
Bookmark and Share
The study illustrates the promising potential of a cell phone–enabled, field-portable and cost-effective E. coli detection platform for the screening of both water and food samples.

Researchers from the UCLA Henry Samueli School of Engineering and Applied Science have developed a new cell phone–based fluorescent imaging and sensing platform that can detect the presence of the bacterium Escherichia coli in food and water. The engineers combined antibody functionalized glass capillaries with quantum dots (semiconductors often used for medical imaging) as signal reporters to specifically detect E. coli particles in liquid samples using a lightweight, compact attachment to an existing cell-phone camera.

Using battery-powered, inexpensive light-emitting diodes (LEDs), the researchers can excite/pump labeled E. coli particles captured on the capillary surface; there, emissions from the quantum dots can be imaged with the cell-phone camera, using an additional lens inserted between the capillary and the cell phone.

The cost-effective cell-phone attachment acts as a florescent microscope, quantifying the emitted light from each capillary after the specific capture of E. coli particles within a sample. By quantifying the florescent light emission from each tube, the concentration of E. coli in the sample can be determined.

E. coli can easily contaminate food and drinking water. It poses a significant threat to public health, even in highly developed parts of the world, and causes a large number of hospitalizations and deaths every year. As few as 10–100 E. coli particles can kill the cells of the intestinal lining, destroy the kidneys and cause blood clots in the brain, as well as seizures, paralysis and respiratory failure.

Authors of the research include UCLA electrical engineering postdoctoral scholar Hongying Zhu; UCLA electrical engineering undergraduate student Uzair Sikora; and UCLA associate professor of electrical engineering and bioengineering Aydogan Ozcan. Ozcan is also a member of the California NanoSystems Institute at UCLA. More on Ozcan's research group can be found at

The research is published in the peer-reviewed journal The Royal Society of Chemistry and is available online.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Scientific News
Safer, Faster Way To Remove Pollutants From Water
Using nanoparticles filled with enzymes proves more effective than current methods.
Low Impact Fracking Fluid on Top at IChemE Global Awards
A novel fracturing fluid designed to make fracking greener.
Marine Invasive Species May Benefit From Rising CO2 Levels
Ocean acidification may well be helping invasive species of algae, jellyfish, crabs and shellfish to move to new areas of the planet with damaging consequences, according to the findings of a new report.
Game for Climate Adaptation
MIT-led project shows a new method to help communities manage climate risks.
Tufts Chemist Discovers Way to Isolate Single-crystal Ice Surfaces
Promises insights into climate, environment and age-old riddles, such as why no two snowflakes are alike.
Potential Indirect Effects of Humans on Water Quality
Newly studied class of water contaminants occur naturally, but are more prevalent in populated areas.
Rapid Method for Water, Air and Soil Pathogen Screening
Researchers at BGU and the Massachusetts Institute of Technology (MIT) have developed a highly sensitive, cost-effective technology for rapid bacterial pathogen screening of air, soil, water, and agricultural produce in as little as 24 hours.
First Results Describing Sick Sea Star Immune Response
Though millions of sea stars along the West Coast have perished in the past several years from an apparent wasting disease, scientists still don’t know why.
Microbe Sleuth
Tanja Bosak examines how life and the Earth evolved in tandem during their early history together.
The Age of Humans Controlling Microbes
Engineered bacteria could soon be used to detect environmental toxins, treat diseases, and sustainably produce chemicals and fuels.
Scroll Up
Scroll Down

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos