Corporate Banner
Satellite Banner
Environmental Analysis
Scientific Community
Become a Member | Sign in
Home>News>This Article

New Oil Spill Dispersant made from Peanut Butter, Chocolate & Ice Cream

Published: Wednesday, August 22, 2012
Last Updated: Wednesday, August 22, 2012
Bookmark and Share
The new dispersant is made from edible ingredients that both breaks up oil slicks and keeps oil from sticking to the feathers of birds.

"Each of the ingredients in our dispersant is used in common food products like peanut butter, chocolate and whipped cream," said Lisa K. Kemp, Ph.D. She reported on the dispersant at the 244th National Meeting & Exposition of the American Chemical Society.

"Other scientists are working on new oil dispersants and absorbents, but nothing that's quite like ours. It not only breaks up oil but prevents the deposition of oil on birds and other objects, like the ingredients in laundry detergent keep grease from redepositing on clothing in the rinse cycle. Birds can sit in slicks of the dispersed oil, they can dive through it and take off and flap their wings, and the oil will fall off."

Kemp's colleague, Robert Lochhead, Ph.D., developed the concept for the new dispersant, and the research team now has moved the material from concept to a prototype dispersant suitable for testing on actual oil spills. The team, which also includes Drs. Sarah Morgan, Dan Savin and Les Goff, is at the University of Southern Mississippi in Hattiesburg.

Lochhead said the new dispersant is based on scientific principles established decades ago during the development of modern laundry detergents. One ingredient, for instance, is a special polymer that sticks to the surface of oil droplets to keep them from sticking to the feathers of sea birds. Similar polymers in laundry detergents keep oil and grease removed during the wash cycle from getting back on clothing during the rinse cycle.

That feature in the new dispersant would be critical for minimizing damage to wildlife and beaches, Kemp noted. When detergents are used to remove oil that has coated fur or feathers, it defeats their natural waterproofing effect, leaving birds less buoyant and more susceptible to hypothermia. Birds can also eat the oil as they try to clean themselves, causing internal damage. By some estimates, almost 225,000 birds died in this way after being covered in oil from the 1989 Exxon Valdez spill off the coast of Alaska.

Another important advantage, Kemp noted, is the ease of quickly obtaining large amounts of ingredients, even ton quantities, for making the dispersant at reasonable cost. She envisioned agencies like the U.S. Coast Guard keeping small amounts on hand for first response, with larger quantities being quickly made as necessary.

With funding from the National Science Foundation (IIP-1127846), Kemp helped the group move from the prototype they had developed in the lab to a version that would be ready to be tested and approved for use with future oil spills. The group used a robotic device to quickly screen thousands of possible combinations until they settled on a winning formula. The team had support from large chemical manufacturers, including The Dow Chemical Company, Archer Daniels Midland Company and Croda International for ingredient selection and supply. In order to move to commercialization of this technology, it will now be necessary to seek partners and end-use customers with interest in testing the product.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Preventing Drinking Water Contamination by Pharmaceuticals
In recent years, researchers have realized that many products, including pharmaceuticals, have ended up where they’re not supposed to be — in our drinking water.
Friday, September 11, 2015
Stinky Gases Emanating from Landfills Could Transform into Clean Energy
Research will be presented at a meeting of the American Chemical Society.
Wednesday, August 13, 2014
Carbon Dioxide ‘Sponge’ Could Ease Transition to Cleaner Energy
A sponge-like plastic that sops up the greenhouse gas carbon dioxide (CO2) might ease our transition away from polluting fossil fuels and toward new energy sources, such as hydrogen.
Wednesday, August 13, 2014
A New Solution for Storing Fuel for Alternative Energy
Scientists are developing a novel way to store hydrogen to smooth out the long-awaited transition away from fossil fuels.
Wednesday, May 21, 2014
Special Air Filter Blocks Small Particles Called UFPs from Getting Inside Cars
Newly developed HECA filters could reduce UFP levels by 93 percent.
Friday, April 11, 2014
Scientific News
Safer, Faster Way To Remove Pollutants From Water
Using nanoparticles filled with enzymes proves more effective than current methods.
Low Impact Fracking Fluid on Top at IChemE Global Awards
A novel fracturing fluid designed to make fracking greener.
Marine Invasive Species May Benefit From Rising CO2 Levels
Ocean acidification may well be helping invasive species of algae, jellyfish, crabs and shellfish to move to new areas of the planet with damaging consequences, according to the findings of a new report.
Game for Climate Adaptation
MIT-led project shows a new method to help communities manage climate risks.
Tufts Chemist Discovers Way to Isolate Single-crystal Ice Surfaces
Promises insights into climate, environment and age-old riddles, such as why no two snowflakes are alike.
Potential Indirect Effects of Humans on Water Quality
Newly studied class of water contaminants occur naturally, but are more prevalent in populated areas.
Rapid Method for Water, Air and Soil Pathogen Screening
Researchers at BGU and the Massachusetts Institute of Technology (MIT) have developed a highly sensitive, cost-effective technology for rapid bacterial pathogen screening of air, soil, water, and agricultural produce in as little as 24 hours.
First Results Describing Sick Sea Star Immune Response
Though millions of sea stars along the West Coast have perished in the past several years from an apparent wasting disease, scientists still don’t know why.
Microbe Sleuth
Tanja Bosak examines how life and the Earth evolved in tandem during their early history together.
The Age of Humans Controlling Microbes
Engineered bacteria could soon be used to detect environmental toxins, treat diseases, and sustainably produce chemicals and fuels.
Scroll Up
Scroll Down

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos