Corporate Banner
Satellite Banner
Environmental Analysis
Scientific Community
Become a Member | Sign in
Home>News>This Article

Air Pollution Study Clears the Air on Diesel Versus Gas Emissions

Published: Thursday, October 25, 2012
Last Updated: Wednesday, October 24, 2012
Bookmark and Share
Diesel exhaust contributes 15 times more than gas emissions per liter of fuel burned, new study reports.

Are gasoline-fueled cars or large diesel trucks the bigger source of secondary organic aerosol (SOA), a major component of smog? UC Berkeley researchers have stepped into this debate with a new study that says diesel exhaust contributes 15 times more than gas emissions per liter of fuel burned.

The study, published in the Proceedings of the National Academy of Sciences, elucidates the contributions to air pollution from the two types of fuel emissions.

The authors estimate that diesel exhaust is responsible for 65-90 percent of a region’s vehicular-derived SOA, depending upon the relative amounts of gasoline and diesel used in the area.

For example, the researchers noted that in the San Francisco Bay Area, about 10 times more gas is used compared with diesel.

SOA contributes to respiratory problems and poor air quality, so pinpointing the major sources of the pollutant is important in evaluating current and future policies to reduce smog in the state.

The new findings contradict previous research that put the blame on gasoline-fueled vehicles as the predominant source of precursors that form secondary organic aerosol.

“We can now say that, while both motor vehicle sources are important for these ‘secondary’ particles, diesel is responsible for a larger portion, especially in regions such as the San Joaquin Valley with a lot of diesel use,” said study principal investigator and professor Allen Goldstein, who has joint appointments in the Department of Environmental Science, Policy and Management and the Department of Civil and Environmental Engineering.

For this study, Goldstein, who also is a faculty chemist at the Lawrence Berkeley National Laboratory, teamed up with Robert Harley, professor of civil and environmental engineering, and an expert on vehicle emissions and air quality.

The findings stand out because the researchers were able to tease out the chemical composition of fuel emissions.

“The data from our study contains the most comprehensive chemical detail to date on diesel and gasoline emissions,” said study lead author Drew Gentner, a recent UC Berkeley Ph.D. graduate in civil and environmental engineering.

Gentner continued, “This presents many opportunities to assess the chemistry of these compounds in the atmosphere and the impacts of these sources. We expect that these findings will help policymakers improve air pollution control measures in the state, and also other parts of the world.”

The California Air Resources Board and the U.S. Environmental Protection Agency helped support this research.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,600+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Contaminated Site Yields Wealth of Information on Microbes 10 Feet Under
Sequencing of nearly 150,000 genes from soil samples at a former uranium mill site along the Colorado River in Rifle, Colo.
Thursday, October 04, 2012
Scientific News
Microbe Sleuth
Tanja Bosak examines how life and the Earth evolved in tandem during their early history together.
The Age of Humans Controlling Microbes
Engineered bacteria could soon be used to detect environmental toxins, treat diseases, and sustainably produce chemicals and fuels.
Messing With The Monsoon
Manmade aerosols can alter rainfall in the world’s most populous region.
Plastic for Dinner
Roughly a quarter of the fish sampled from fish markets in California and Indonesia contained man-made debris according to a study from the University of California, Davis, and Hasanuddin University in Indonesia.
Seeking “Gold Standard” Wastewater Treatments
Metagenomic analyses lend insights into how microbes break down wastewater contaminants.
Preventing Drinking Water Contamination by Pharmaceuticals
In recent years, researchers have realized that many products, including pharmaceuticals, have ended up where they’re not supposed to be — in our drinking water.
Low-level Arsenic Exposure Before Birth Associated with Early Puberty in Female Mice
Study examine whether low-dose arsenic exposure could have similar health outcomes in humans.
Intensity of Desert Storms May Affect Ocean Phytoplankton
MIT study finds phytoplankton are extremely sensitive to changing levels of desert dust.
Determination of Phosphate in Soil Extracts in the Field: A Green Chemistry Enzymatic Method
New method for phosphate determination which can be carried out in the field to obtain results on the spot.
Open-Source Photometric System for Enzymatic Nitrate Quantification
New method proposed for developing a cheaper, more accessible open-source water testing platform capable of performing Nitrate Reductase Nitrate-Nitrogen Analysis.
Scroll Up
Scroll Down

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,600+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos