Corporate Banner
Satellite Banner
Environmental Analysis
Scientific Community
Become a Member | Sign in
Home>News>This Article

SpectraFluidics' Chemical Detection Technology Sniffs Out Explosives with Canine-Like Precision

Published: Friday, November 23, 2012
Last Updated: Thursday, November 22, 2012
Bookmark and Share
Documents repeatable DNT detection capability of sensing technology developed at the University of California, Santa Barbara.

SpectraFluidics has demonstrated the repeatable performance capabilities of their novel sensor platform when used to detect DNT, an important chemical marker associated with TNT explosives.

SpectraFluidics Inc. Chief Scientist Dr. Brian Piorek said their research provides empirical test evidence of the efficacy of the breakthrough science behind the firm's Chemical Vapor Detection Cartridges.

Conducted in collaboration with scientists at UC Santa Barbara, tests showing the system's sensitivity and specificity were recently published in Analytical Chemistry, a journal of the American Chemical Society ('Free-Surface Microfluidics/Surface-Enhanced Raman Spectroscopy for Real-Time Trace Vapor Detection of Explosives', October 16, 2012.)

"This breakthrough capability for detecting vapors from explosives opens up tremendous commercial applications for the unattended and automated detection of trace levels of suspect chemicals, which can range from airport screening and port security to anti-bioterrorism and food supply safety," Philip Strong, CEO of SpectraFluidics commented.

Tests documented in the paper show the extraordinary sensitivity of this new generation of sensors that enable a user to identify the chemical signature of a substance within two minutes.

Dr. Piorek stated that it's this combination of sensitivity, chemical specificity, and speed that makes the technology so appealing to many homeland security, food and research applications.

"The researchers at SpectraFluidics and the UCSB Institute for Collaborative Biotechnologies have developed a fundamentally new approach for detecting chemicals at extremely low vapor phase concentrations," Dr. Piorek commented.

Dr. Piorek continued, "Employing an innovative combination of microfluidics and nanotechnology in our patented nanoscale vapor detection platform has enabled us to create a microsystem on a silicon chip that biomimics a dog's keen sense of smell."

Many existing chemical detection systems also use surface-enhanced Raman spectroscopy (SERS), a process that distributes or "scatters" photons of the material being tested to isolate individual molecules for identification purposes.

In contrast, SpectraFluidics' patented technology combines SERS with free-surface microfluidics, a process that draws liquid along a microscale channel which provides the effect of both concentrating molecules and greatly enhancing the Raman signal.

"Since the first proof of concept was completed several years ago, SpectraFluidics has been awarded key development contracts with multiple government agencies and is placing field trial products with leading manufacturers of security and analytical equipment," Strong added.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Scientific News
Safer, Faster Way To Remove Pollutants From Water
Using nanoparticles filled with enzymes proves more effective than current methods.
Low Impact Fracking Fluid on Top at IChemE Global Awards
A novel fracturing fluid designed to make fracking greener.
Marine Invasive Species May Benefit From Rising CO2 Levels
Ocean acidification may well be helping invasive species of algae, jellyfish, crabs and shellfish to move to new areas of the planet with damaging consequences, according to the findings of a new report.
Game for Climate Adaptation
MIT-led project shows a new method to help communities manage climate risks.
Tufts Chemist Discovers Way to Isolate Single-crystal Ice Surfaces
Promises insights into climate, environment and age-old riddles, such as why no two snowflakes are alike.
Potential Indirect Effects of Humans on Water Quality
Newly studied class of water contaminants occur naturally, but are more prevalent in populated areas.
Rapid Method for Water, Air and Soil Pathogen Screening
Researchers at BGU and the Massachusetts Institute of Technology (MIT) have developed a highly sensitive, cost-effective technology for rapid bacterial pathogen screening of air, soil, water, and agricultural produce in as little as 24 hours.
First Results Describing Sick Sea Star Immune Response
Though millions of sea stars along the West Coast have perished in the past several years from an apparent wasting disease, scientists still don’t know why.
Microbe Sleuth
Tanja Bosak examines how life and the Earth evolved in tandem during their early history together.
The Age of Humans Controlling Microbes
Engineered bacteria could soon be used to detect environmental toxins, treat diseases, and sustainably produce chemicals and fuels.
Scroll Up
Scroll Down

SELECTBIO Market Reports
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos