Corporate Banner
Satellite Banner
Environmental Analysis
Scientific Community
Become a Member | Sign in
Home>News>This Article

SpectraFluidics' Chemical Detection Technology Sniffs Out Explosives with Canine-Like Precision

Published: Friday, November 23, 2012
Last Updated: Thursday, November 22, 2012
Bookmark and Share
Documents repeatable DNT detection capability of sensing technology developed at the University of California, Santa Barbara.

SpectraFluidics has demonstrated the repeatable performance capabilities of their novel sensor platform when used to detect DNT, an important chemical marker associated with TNT explosives.

SpectraFluidics Inc. Chief Scientist Dr. Brian Piorek said their research provides empirical test evidence of the efficacy of the breakthrough science behind the firm's Chemical Vapor Detection Cartridges.

Conducted in collaboration with scientists at UC Santa Barbara, tests showing the system's sensitivity and specificity were recently published in Analytical Chemistry, a journal of the American Chemical Society ('Free-Surface Microfluidics/Surface-Enhanced Raman Spectroscopy for Real-Time Trace Vapor Detection of Explosives', October 16, 2012.)

"This breakthrough capability for detecting vapors from explosives opens up tremendous commercial applications for the unattended and automated detection of trace levels of suspect chemicals, which can range from airport screening and port security to anti-bioterrorism and food supply safety," Philip Strong, CEO of SpectraFluidics commented.

Tests documented in the paper show the extraordinary sensitivity of this new generation of sensors that enable a user to identify the chemical signature of a substance within two minutes.

Dr. Piorek stated that it's this combination of sensitivity, chemical specificity, and speed that makes the technology so appealing to many homeland security, food and research applications.

"The researchers at SpectraFluidics and the UCSB Institute for Collaborative Biotechnologies have developed a fundamentally new approach for detecting chemicals at extremely low vapor phase concentrations," Dr. Piorek commented.

Dr. Piorek continued, "Employing an innovative combination of microfluidics and nanotechnology in our patented nanoscale vapor detection platform has enabled us to create a microsystem on a silicon chip that biomimics a dog's keen sense of smell."

Many existing chemical detection systems also use surface-enhanced Raman spectroscopy (SERS), a process that distributes or "scatters" photons of the material being tested to isolate individual molecules for identification purposes.

In contrast, SpectraFluidics' patented technology combines SERS with free-surface microfluidics, a process that draws liquid along a microscale channel which provides the effect of both concentrating molecules and greatly enhancing the Raman signal.

"Since the first proof of concept was completed several years ago, SpectraFluidics has been awarded key development contracts with multiple government agencies and is placing field trial products with leading manufacturers of security and analytical equipment," Strong added.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,600+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Scientific News
Messing With The Monsoon
Manmade aerosols can alter rainfall in the world’s most populous region.
Plastic for Dinner
Roughly a quarter of the fish sampled from fish markets in California and Indonesia contained man-made debris according to a study from the University of California, Davis, and Hasanuddin University in Indonesia.
Seeking “Gold Standard” Wastewater Treatments
Metagenomic analyses lend insights into how microbes break down wastewater contaminants.
Preventing Drinking Water Contamination by Pharmaceuticals
In recent years, researchers have realized that many products, including pharmaceuticals, have ended up where they’re not supposed to be — in our drinking water.
Low-level Arsenic Exposure Before Birth Associated with Early Puberty in Female Mice
Study examine whether low-dose arsenic exposure could have similar health outcomes in humans.
Intensity of Desert Storms May Affect Ocean Phytoplankton
MIT study finds phytoplankton are extremely sensitive to changing levels of desert dust.
Determination of Phosphate in Soil Extracts in the Field: A Green Chemistry Enzymatic Method
New method for phosphate determination which can be carried out in the field to obtain results on the spot.
Open-Source Photometric System for Enzymatic Nitrate Quantification
New method proposed for developing a cheaper, more accessible open-source water testing platform capable of performing Nitrate Reductase Nitrate-Nitrogen Analysis.
Toxic Algae is a Threat to Our Water
A report concludes that blooms of toxic cyanobacteria, or blue-green algae, are a poorly monitored and underappreciated risk to recreational and drinking water quality in the U.S., and may increasingly pose a global health threat.
Significant Part of Greenhouse Gas Emissions Comes From River and Sea Organisms
Running streams are key sources of the greenhouse gas carbon dioxide, but why is it so?
Scroll Up
Scroll Down

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,600+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos