Corporate Banner
Satellite Banner
Environmental Analysis
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Parasite Metabolism can Foretell Disease Ranges under Climate Change

Published: Thursday, February 28, 2013
Last Updated: Thursday, February 28, 2013
Bookmark and Share
Knowing the temperatures that viruses, bacteria, worms and all other parasites need to grow and survive could help determine the future range of infectious diseases under climate change.

Princeton University researchers developed a model that can identify the prospects for nearly any disease-causing parasite as the Earth grows warmer, even if little is known about the organism. Their method calculates how the projected temperature change for an area would alter the creature's metabolism and life cycle, the researchers report in the journal Ecology Letters.

Lead author Péter Molnár, a Princeton postdoctoral researcher of ecology and evolutionary biology, explained that the technique is an all-inclusive complement to current methods of predicting how climate change will affect disease, which call for a detailed knowledge of the environmental factors a specific parasite needs to thrive. But for many parasites, that information doesn't exist.

The more general Princeton model is based on the metabolic theory of ecology. Under this premise, all biological organisms need a balance between body size and body temperature to maintain the metabolism that keeps their organs functioning. Like any cold-blooded creature, disease-causing parasites rely on external temperatures for this balance. Scientists with knowledge of a parasite's body size and life cycle could use the Princeton metabolic model to predict how the organism would fare in altered climates.

"Our framework is applicable to pretty much any parasite, and utilizes established metabolic patterns shown to hold across a wide variety of species," Molnár said.

"It would be impossible to ever gather enough data to develop a separate climate-change model for each existing and emerging disease in humans, wildlife and livestock," Molnár said. "With our physiological approach, many of the parameters for a specific pathogen can be predicted based on what is known about metabolic processes in all parasites, so that the model remains applicable to new and less-studied species as well."

The Princeton model estimates the "fundamental thermal niche" of a parasite, the area between the lowest and highest temperature in which a specific parasite prospers. The researchers show that an organism already kicking around the high end of that range could die out when things heat up, while a parasite lingering at the low end could lead to novel epidemics in host populations and extend to new areas.

Because global temperatures will still differ by elevation and distance from the equator, some parasites also might "migrate" from their previous territory — rendered inhospitable by higher temperatures — to one more inviting. That could expose human and animal populations to new diseases to which they may have little natural resistance. Thus, having an idea of which areas a parasite might transition to is important, Molnár said.

"As metabolism varies with temperature, parasite life-cycle components such as mortality, development, reproduction or infectivity may also vary with temperature," Molnár said. "If, for a specific parasite, we know the temperature dependence of its metabolism, or the temperature dependence of its life-cycle components, our model allows using these temperature effects to evaluate the impact of climate change on parasite fitness, and thus the regions in which the parasite may occur in the future."

Ryan Hechinger, a biologist at the University of California-Santa Barbara, said the framework adds to recent research tempering the fear that infectious diseases will uniformly flourish as global temperatures rise. Hechinger, who focuses his research on parasite ecology and evolution, is familiar with the work but had no role in it.

"There has been quite a bit of a 'the sky is falling' attitude from people claiming that infectious diseases are only going to get worse," Hechinger said. "We can't forget that most infectious diseases are caused by living agents. Like most living things, these agents may be negatively or positively affected by climate change. The modeling in this paper clarifies that infectious diseases may increase or decrease under climate change, specifically under global warming."


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Even if Emissions Stop, Carbon Dioxide Could Warm Earth for Centuries
Study suggests that it might take a lot less carbon than previously thought to reach the global temperature scientists deem unsafe.
Monday, November 25, 2013
Scientific News
Playing 'Tag' with Pollution lets Scientists See Who's It
Using a climate model that can tag sources of soot from different global regions and can track where it lands on the Tibetan Plateau, researchers have determined which areas around the plateau contribute the most soot — and where.
Pesticide Found in 70 Percent of Massachusetts’ Honey Samples
New Harvard University study says that the pesticide commonly found in honey samples is implicated in Colony Collapse Disorder.
Ocean Acidfication may have a Dramatic Affect on Marine Life
Study finds many species may die out and others may migrate significantly as ocean acidification intensifies.
Nanoparticles Can Clean Up Environmental Pollutants
Researchers have found that nanomaterials and UV light can “trap” chemicals for easy removal from soil and water.
Fossil Fuel Emissions will Complicate Radiocarbon Dating, Warns Scientist
The paper is published in the journal PNAS.
New Research will Show How the Environment Could Change the Way We Eat
A new study funded by the Wellcome Trust will investigate how environmental changes over the next 20-30 years may impact the way we eat, in the UK and worldwide.
Bedside Ebola Diagnostic
A new test can accurately diagnose Ebola virus disease within minutes, providing clinicians with crucial information for treating patients and containing outbreaks.
The Deep Carbon Cycle
Over billions of years, the total carbon content of the outer part of the Earth—in its upper mantle, crust, oceans and atmospheres—has gradually increased, scientists report.
Profiling DNA Viruses in Arctic Lakes
The Arctic's freshwater lakes contain viral communities composed of DNA viruses from lineages that are largely distinct from those described elsewhere, a new study suggests.
Unravelling the Mysteries of Carbonic Acid
Researchers have shown how gaseous carbon dioxide molecules are solvated by water to initiate the proton transfer chemistry that produces carbonic acid and bicarbonate.
Scroll Up
Scroll Down
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!