Corporate Banner
Satellite Banner
Environmental Analysis
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

In Last Great Age of Warmth, CO2 at Work - But Hardly Alone

Published: Tuesday, April 09, 2013
Last Updated: Tuesday, April 09, 2013
Bookmark and Share
According to new research, warming patterns of prolonged global warmth differed dramatically from modern temperature patterns.

Warming patterns during Earth’s last period of prolonged global warmth differed dramatically from modern temperature patterns, according to new research by a Yale University scientist and colleagues.

Cloud feedbacks, ocean mixing, or other dynamic factors must have played a greater role in Pliocene warming than commonly recognized, the scientists argue, and these must be accounted for in order to make meaningful predictions about Earth’s future climate.

In a paper published April 4 in the journal Nature, Yale climate scientist Alexey Fedorov and colleagues compile records of sea surface temperatures going back five million years, to the early Pliocene.

These records reveal a world with fairly uniform warm temperatures in the whole of the Tropics prior to 4 million years ago - a significant scenario that typical climate model simulations fail to show.

“If we want to understand our future climate, we have to be able to understand climate of the past,” said Fedorov, a professor of oceanic and atmospheric sciences at Yale and one of the paper’s principal authors.

Fedorov continued, “The Pliocene epoch attracts particular attention because of similar CO2 levels to what we have had over the last few decades, but its climate was markedly different in several important ways. Still, if we’re able to simulate the early Pliocene climate, we will be more confident in our ability to predict future climate change.”

Warm and temperate, the Pliocene is widely viewed as a potential analog for a future hot Earth. Using chemical fingerprints in ocean sediments to estimate sea surface temperatures, the researchers describe long-term climate trends from the early Pliocene to the present, comparing and contrasting that ancient climate with today’s.

The Pliocene Earth had the same maximum temperature as now and a similar concentration of atmospheric CO2, but the waters in the Tropics (off the coast of Peru, for example) were much warmer than now, resembling modern El Niño conditions.

(There was little or no east-west temperature variation along the equator.) Temperature differences between high latitudes and the Tropics were also much smaller.

Kira Lawrence of Lafayette College, also a principal author, said: “While existing data suggest that the climate forcing [factors controlling climate] during the Pliocene was marginally different, the broad temperature patterns during the Pliocene were different in a fundamental way. As a community, we have been focused on changes in the global mean temperature; what our study demonstrates is the potential for climate patterns to be markedly different in a world that is not that much warmer than today’s.”

Previous attempts to explain Pliocene climate have emphasized tectonic changes in Indonesia and Central America.

But accounting for this in climate models still results in a conflict with actual temperature patterns.

Several dynamic factors have been proposed to explain the warm temperature patterns during the Pliocene. These include ocean mixing in subtropical waters (perhaps due to widespread hurricanes) and diminished cloud reflectivity (perhaps due to a different aerosol composition), which would tend to warm the ocean.

When combined in models with higher levels of CO2, these help replicate conditions of the warm Pliocene Earth. But so far these factors have not been included in climate models used to make future projections.

A better understanding of what caused the Pliocene climate, with its nearly uniform tropical ocean temperatures, will increase confidence in the fidelity of the models, researchers said.

Said co-author Chris Brierley, a former Yale postdoctoral researcher now at University College London, “I’m worried that we can’t discount a possible future that has a vast pool of warm water covering the tropics, and the nasty changes in the atmospheric circulation and rainfall changes that would go along with that.”

The paper is titled "Patterns and mechanisms of early Pliocene warmth."


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More than 5,000+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Single-Cell, 42-plexed Protein Analysis Achieved with a New Microchip Technology
A novel microdevice capable of detecting 42 unique immune effector proteins has been developed.
Tuesday, February 17, 2015
Scientific News
Environmental Impact of GM Crops
Following the adoption of GM crops, insecticide usage decreases but herbicide use increases, study shows.
Water Dynamics Affect Coral Reefs
Understanding what aids or degrades these ecosystems can help focus conservation efforts on reefs that are most likely to survive global warming.
Impact of Emerging Contaminants in Our Water Supply
Emerging contaminants, any synthetic or naturally occurring chemical not commonly monitored in the environment, in our water supply are becoming of increasing concern due to their potential ecological and/or human health effects.
Study Finds Mercury Contamination Across Western N. America
BRI research results found widespread mercury contamination at various levels across Western North America.
Device Improves Measurement of Water Pollution
Researchers have developed a device that makes it easier to measure contaminant levels in water.
Changing Ocean Chemistry Due To Human Activity
More anthropogenic carbon in the northeast Pacific means weaker shells for many marine species.
Sensor Could Help Fight Bacterial Infections
The sensor can detect E.coli bacteria in 15-20 minutes over a wide temperature range, offering a fast and cost effective tests.
Extreme Temperatures Could Increase Preterm Birth Risk
Researchers at NIH have found more preterm births among women exposed to extremes of hot and cold.
Measuring Chemistry on a Chip
Researchers developing chemical sensor chip for sample analysis in a lab or monitoring air and water quality in the field.
Unravelling a Microbial Mess
Scientists have untangled the Kansas-based mess of microbes more fully than scientists have ever done for a sample of soil.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,000+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!