Corporate Banner
Satellite Banner
Environmental Analysis
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

In Last Great Age of Warmth, CO2 at Work - But Hardly Alone

Published: Tuesday, April 09, 2013
Last Updated: Tuesday, April 09, 2013
Bookmark and Share
According to new research, warming patterns of prolonged global warmth differed dramatically from modern temperature patterns.

Warming patterns during Earth’s last period of prolonged global warmth differed dramatically from modern temperature patterns, according to new research by a Yale University scientist and colleagues.

Cloud feedbacks, ocean mixing, or other dynamic factors must have played a greater role in Pliocene warming than commonly recognized, the scientists argue, and these must be accounted for in order to make meaningful predictions about Earth’s future climate.

In a paper published April 4 in the journal Nature, Yale climate scientist Alexey Fedorov and colleagues compile records of sea surface temperatures going back five million years, to the early Pliocene.

These records reveal a world with fairly uniform warm temperatures in the whole of the Tropics prior to 4 million years ago - a significant scenario that typical climate model simulations fail to show.

“If we want to understand our future climate, we have to be able to understand climate of the past,” said Fedorov, a professor of oceanic and atmospheric sciences at Yale and one of the paper’s principal authors.

Fedorov continued, “The Pliocene epoch attracts particular attention because of similar CO2 levels to what we have had over the last few decades, but its climate was markedly different in several important ways. Still, if we’re able to simulate the early Pliocene climate, we will be more confident in our ability to predict future climate change.”

Warm and temperate, the Pliocene is widely viewed as a potential analog for a future hot Earth. Using chemical fingerprints in ocean sediments to estimate sea surface temperatures, the researchers describe long-term climate trends from the early Pliocene to the present, comparing and contrasting that ancient climate with today’s.

The Pliocene Earth had the same maximum temperature as now and a similar concentration of atmospheric CO2, but the waters in the Tropics (off the coast of Peru, for example) were much warmer than now, resembling modern El Niño conditions.

(There was little or no east-west temperature variation along the equator.) Temperature differences between high latitudes and the Tropics were also much smaller.

Kira Lawrence of Lafayette College, also a principal author, said: “While existing data suggest that the climate forcing [factors controlling climate] during the Pliocene was marginally different, the broad temperature patterns during the Pliocene were different in a fundamental way. As a community, we have been focused on changes in the global mean temperature; what our study demonstrates is the potential for climate patterns to be markedly different in a world that is not that much warmer than today’s.”

Previous attempts to explain Pliocene climate have emphasized tectonic changes in Indonesia and Central America.

But accounting for this in climate models still results in a conflict with actual temperature patterns.

Several dynamic factors have been proposed to explain the warm temperature patterns during the Pliocene. These include ocean mixing in subtropical waters (perhaps due to widespread hurricanes) and diminished cloud reflectivity (perhaps due to a different aerosol composition), which would tend to warm the ocean.

When combined in models with higher levels of CO2, these help replicate conditions of the warm Pliocene Earth. But so far these factors have not been included in climate models used to make future projections.

A better understanding of what caused the Pliocene climate, with its nearly uniform tropical ocean temperatures, will increase confidence in the fidelity of the models, researchers said.

Said co-author Chris Brierley, a former Yale postdoctoral researcher now at University College London, “I’m worried that we can’t discount a possible future that has a vast pool of warm water covering the tropics, and the nasty changes in the atmospheric circulation and rainfall changes that would go along with that.”

The paper is titled "Patterns and mechanisms of early Pliocene warmth."


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,000+ scientific posters on ePosters
  • More than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Single-Cell, 42-plexed Protein Analysis Achieved with a New Microchip Technology
A novel microdevice capable of detecting 42 unique immune effector proteins has been developed.
Tuesday, February 17, 2015
Scientific News
Paper Filter Can Remove Viruses from Water
A new paper filter can purify water from viruses, even the most difficult and contagious.
Changing California Land Uses will Shape Water Demands in 2062
If past patterns of California land-use change continue, projected water needs by the year 2062 will increase beyond current supply.
Chemical Emitted by Trees Can Impact Ozone Levels
Researchers have found that the way that isoprene, a natural hydrocarbon compound emitted from broadleaf deciduous trees, is processed in the atmosphere at night can have a big impact on the ozone in the atmosphere the next day.
A New Sensor to Assess the Biodiversity in the Atmosphere
UPM researchers design a portable autonomous device capable of collecting and assessing bacterial, viral and fungal biodiversity in the air as well as pollen in different urban areas and seasons.
Measuring The Airborne Toxicants Urban Bicyclists Inhale
Researchers analyze breath biomarkers to measure uptake of volatile organic compounds by bicyclists.
Elevated Bladder Cancer Risk in New England and Arsenic in Drinking Water From Private Wells
Researchers have found that drinking water from private wells, may have contributed to the elevated risk of bladder cancer in northern new England.
Detecting Nano Amounts In Environmental Samples
The NanoUmwelt project is developing a technique that can detect nanomaterials in a variety of environmental samples.
Bioreactors Ready for the Big Time
Bioreactors are passive filtration systems that can reduce nitrate losses from farm fields.
Microbial Biosensor Designed To Evaluate Water Toxicity
UAB researchers develop new paper-based biological tool.
Coding and Computers Help Spot Methane, Explosives
Coded apertures improve and shrink mass spectrometers for field use.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!