Corporate Banner
Satellite Banner
Environmental Analysis
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

What You Eat Determines Your ‘Nitrogen Footprint’

Published: Wednesday, May 15, 2013
Last Updated: Wednesday, May 15, 2013
Bookmark and Share
Researchers have calculated that beef generates about twice as much nitrogen as pork, and almost three times as much as chicken or fish.

Scientists at Oxford, Lancaster, and Virginia universities have produced a web-based tool that allows anyone living in the UK to see their own ‘nitrogen footprint’.

It asks users to put in information so the tool can calculate the likely effect that the food that they eat or the transport they take has on the environment in terms of nitrogen pollution.

Scientists have warned that reactive nitrogen pollution is already a major environmental problem that is causing significant damage to air and water quality across the UK. Nitrogen runoff from farms and man-made effluents are largely responsible for algal blooms that affect river systems, whilst atmospheric nitrogen pollution is leading to significant losses of biodiversity. Most of the nitrogen pollution arises out of agricultural processes used in the growing of crops or grazing of animals, and a significant proportion of the average UK nitrogen footprint comes from vehicle emissions, they warn.

‘Nitrogen is essential for growing crops for food or high quality grass for cattle, as any farmer knows,’ said Paul Whitehead, Director of the Natural Environment Research Council’s Macronutrient Cycles programme at the University of Oxford. ‘However, the widespread use of nitrogen fertilizer to boost crop production has resulted in a runoff of excess nitrogen from farms into our rivers, lakes and groundwaters.’

The researchers used publicly available data such as national atmospheric data, national land use and farm statistics to make the calculations. The N-Calculator website also makes recommendations for how to lessen your ‘nitrogen footprint’, such as cutting back on road and air travel, choosing renewable energy and, most importantly, altering the balance of the foods contained in your diet.

‘Unlike your carbon footprint, what you eat is the most important factor determining your nitrogen footprint,’ said Dr Carly Stevens of Lancaster University. ‘By altering the amount and type of food that you eat, you can make a big difference to your impact on the environment. The difference in nitrogen levels occurs because of the amount of nitrogen that is lost during the food processing cycles. Simply stated,  the larger the animal, the larger its nitrogen footprint because it takes longer to get to market weight.'

The amount of nitrogen pollution from crop production varies with the amount of fertilizer applied and the efficiency of the crop. Nitrogen losses can also occur during food processing and even through household-level food waste.

Universities are starting to use the tool to show students how one individual can alter and help restore a natural cycle like nitrogen. The researchers suggest that the tool could be used by the wider community, particularly schoolchildren, to explore more sustainable ways of living.

The tool, first developed in the US, has been updated and adapted for UK users by researchers from Lancaster University under a project funded by the NERC Macronutrient Cycles programme at Oxford. The device was originally created by award-winning scientist James N Galloway and his research colleagues, Allison Leach, at the University of Virginia, Albert Bleeker of ECN and Jan Willem Erisman of the Louis Bolk Institute, both of The Netherlands.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Organic Farms Not Necessarily Better for Environment
Organic farming is generally good for wildlife but does not necessarily have lower overall environmental impacts than conventional farming, a new analysis has shown.
Friday, September 07, 2012
Scientific News
Pesticide Found in 70 Percent of Massachusetts’ Honey Samples
New Harvard University study says that the pesticide commonly found in honey samples is implicated in Colony Collapse Disorder.
Ocean Acidfication may have a Dramatic Affect on Marine Life
Study finds many species may die out and others may migrate significantly as ocean acidification intensifies.
Nanoparticles Can Clean Up Environmental Pollutants
Researchers have found that nanomaterials and UV light can “trap” chemicals for easy removal from soil and water.
Fossil Fuel Emissions will Complicate Radiocarbon Dating, Warns Scientist
The paper is published in the journal PNAS.
New Research will Show How the Environment Could Change the Way We Eat
A new study funded by the Wellcome Trust will investigate how environmental changes over the next 20-30 years may impact the way we eat, in the UK and worldwide.
Bedside Ebola Diagnostic
A new test can accurately diagnose Ebola virus disease within minutes, providing clinicians with crucial information for treating patients and containing outbreaks.
The Deep Carbon Cycle
Over billions of years, the total carbon content of the outer part of the Earth—in its upper mantle, crust, oceans and atmospheres—has gradually increased, scientists report.
Profiling DNA Viruses in Arctic Lakes
The Arctic's freshwater lakes contain viral communities composed of DNA viruses from lineages that are largely distinct from those described elsewhere, a new study suggests.
Unravelling the Mysteries of Carbonic Acid
Researchers have shown how gaseous carbon dioxide molecules are solvated by water to initiate the proton transfer chemistry that produces carbonic acid and bicarbonate.
Algal Blooms Pose Health Risks Downstream
A new study has found that toxic algal blooms in reservoirs on the Klamath River can create unsafe water conditions far downstream on lower parts of the river in northern California.
Scroll Up
Scroll Down
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!