Corporate Banner
Satellite Banner
Environmental Analysis
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Low-Grade Cotton Brings Top Value in Oil Spill Cleanup

Published: Monday, May 20, 2013
Last Updated: Monday, May 20, 2013
Bookmark and Share
Ecologically friendly discovery is joint effort between Texas Tech University, Cotton Incorporated.

When it comes to cleaning up the next massive crude oil spill, one of the best and most eco-friendly solutions for the job may be low-grade cotton from West Texas.

Seshadri Ramkumar, lead author of the study and manager of the Nonwovens and Advanced Materials Laboratory at The Institute of Environmental and Human Health (TIEHH), said he and his colleagues found that low-micronaire cotton – one of the lowest-quality types of cotton – is most effective at picking up oil. A pound of the low-micronaire cotton can pick up more than 30 pounds of crude oil, and its natural waxiness helps to repel water.

The new study includes some of the first scientific data on unprocessed raw cotton’s use in crude oil spills, and was published in the ACS journal Industrial & Engineering Chemistry Research.

“In this region, about 10 percent of the cotton grown in West Texas is low micronaire,” he said. “It doesn’t take a dye well, so it gets discounted. However, because low-micronaire cotton is less mature, it shrinks, and you are able to pack more fiber into a given area. The strength here is that the low-micronaire cotton absorbs the most crude oil. The oil is not only stuck to surface, the oil gets absorbed into the fiber.”

Ron Kendall, director emeritus at TIEHH and special assistant to the president, said the Deepwater Horizon disaster emphasized the need for better ways of cleaning up oil spills.

“One of the things we realized from Deepwater Horizon is we didn’t have the best tools for cleanup, and the technology wasn’t right for the booms,” Kendall said. “This discovery that low-micronaire cotton, which is the least valuable cotton, can absorb as much crude oil as it does is a breakthrough discovery. It gives us an excellent tool for cleanup of shorelines, animals and ecologically sensitive areas as well as a new technology for booms that can stop oil sheen moving into wetlands. And it’s biodegradable. This is just another added bonus use for low-end West Texas cotton. Now, farmers have a new use for low-end cotton in a very significant way for oil spill cleanup. It’s a major discovery from scientific and economic standpoints.”

Scientists have done extensive studies on fibers such as barley straw, kapok, polypropylene wool, Ramkumar said. However, big gaps existed in knowledge about their basic crude oil-uptake mechanisms and no data existed on unprocessed raw cotton. His team decided to fill those gaps with research on the oil sorption properties of low-micronaire cotton.

The cotton fibers take up oil in multiple ways, including both absorption and adsorption in which oil sticks to the outer surface of the cotton fiber.

“Our interest was to see how raw cotton straight from the bale picks up the crude oil as well as determining the governing mechanism behind picking up the crude oil,” he said. “We show through sophisticated testing that low-micronaire cotton is much finer and can pick up more crude oil. And crude oil is very different from refined motor oil. It’s very dense and releases toxic vapors. It’s not as easy to get picked up. In contrast to synthetic sorbents, raw cotton with its high crude oil sorption capacity and positive environmental footprint make it an ecologically friendly sorbent for oil spill cleanups.”

Laboratory work using crude oil was performed by graduate student Vinitkumar Singh. Both Cotton Incorporated and The CH Foundation contributed funds to this research.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Low-level Arsenic Exposure Before Birth Associated with Early Puberty in Female Mice
Study examine whether low-dose arsenic exposure could have similar health outcomes in humans.
Intensity of Desert Storms May Affect Ocean Phytoplankton
MIT study finds phytoplankton are extremely sensitive to changing levels of desert dust.
Determination of Phosphate in Soil Extracts in the Field: A Green Chemistry Enzymatic Method
New method for phosphate determination which can be carried out in the field to obtain results on the spot.
Open-Source Photometric System for Enzymatic Nitrate Quantification
New method proposed for developing a cheaper, more accessible open-source water testing platform capable of performing Nitrate Reductase Nitrate-Nitrogen Analysis.
Toxic Algae is a Threat to Our Water
A report concludes that blooms of toxic cyanobacteria, or blue-green algae, are a poorly monitored and underappreciated risk to recreational and drinking water quality in the U.S., and may increasingly pose a global health threat.
Significant Part of Greenhouse Gas Emissions Comes From River and Sea Organisms
Running streams are key sources of the greenhouse gas carbon dioxide, but why is it so?
Better Estimates of Worldwide Mercury Pollution
New findings show Asia produces twice as much mercury emissions as previously thought.
Real-Time Data for Cancer Therapy
Biochemical sensor implanted at initial biopsy could allow doctors to better monitor and adjust cancer treatments.
New Biosensors for Managing Microbial ‘Workers’
Researchers at Harvard’s Wyss Institute have unveiled new biosensors that enable scientists to more effectively control and 'communicate with' engineered bacteria.
Playing 'Tag' with Pollution lets Scientists See Who's It
Using a climate model that can tag sources of soot from different global regions and can track where it lands on the Tibetan Plateau, researchers have determined which areas around the plateau contribute the most soot — and where.
Scroll Up
Scroll Down
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!