Corporate Banner
Satellite Banner
Environmental Analysis
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Harvard Researchers Warn of Legacy Mercury in the Environment

Published: Wednesday, July 10, 2013
Last Updated: Wednesday, July 10, 2013
Bookmark and Share
Without stringent emissions reductions, future increases in ocean mercury levels are likely to be greater than anticipated.

Environmental researchers at Harvard University have published evidence that significant reductions in mercury emissions will be necessary just to stabilize current levels of the toxic element in the environment. So much mercury persists in surface reservoirs (soil, air, and water) from past pollution, going back thousands of years, that it will continue to persist in the ocean and accumulate in fish for decades to centuries, they report.

"It's easier said than done, but we're advocating for aggressive reductions, and sooner rather than later," says Helen Amos, a Ph.D. candidate in Earth and Planetary Sciences at the Harvard Graduate School of Arts and Sciences and lead author of the study, published in the journal Global Biogeochemical Cycles.

Amos is a member of the Atmospheric Chemistry Modeling Group at the Harvard School of Engineering and Applied Sciences (SEAS), where researchers have been collecting historical data on mercury emissions as far back as 2000 BC and building new environmental models of mercury cycling that capture the interactions between the atmosphere, oceans, and land.

Their model reveals that most of the mercury emitted to the environment ends up in the ocean within a few decades and remains there for centuries to millennia. These days, emissions are mainly from coal-fired power plants and artisanal gold mining. Thrown into the air, rained down onto lakes, absorbed into the soil, or carried by rivers, mercury eventually finds its way to the sea. In aquatic ecosystems, microbes convert it to methylmercury, the organic compound that accumulates in fish, finds its way to our dinner plates, and has been associated with neurological and cardiovascular damage.

It is generally assumed that mercury pollution began with the Industrial Revolution; in fact, humans have been releasing mercury into the environment for thousands of years. Past research has found it stored in peat in Europe and in layers of sediment at the bottoms of lakes in South America. The ancient Greeks and Chinese used mercury as a pigment; pots of quicksilver have been found in tombs dating to about 2000 BC; and the Assyrians are thought to have used both quicksilver and cinnabar (the bright red ore in which mercury naturally occurs) as early as 1900 BC. In 1570 AD, Spanish colonists in Central and South America were using it to extract silver; 300 years later, mercury again featured in the California gold rush.

The environment does naturally release and cycle a certain amount of mercury, blasting it out of rock with each volcanic eruption, but the new model developed at Harvard demonstrates that humans have been, and continue to be, responsible for the majority of the mercury currently found in the atmosphere, soil, and ocean.

"Ideally, mercury released by human activities would quickly be sequestered in the environment, but instead what we see is a huge quantity of it bouncing from one reservoir to the next," explains senior author Elsie M. Sunderland, who is the Mark & Catherine Winkler Assistant Professor of Aquatic Science at the Harvard School of Public Health and an associate in environmental science and engineering at Harvard SEAS. "This means it continues cycling throughout the environment and persists for much longer timescales than most people realize, which has implications for long-term biological exposures."

The new model quantifies the impact of historical emissions deduced from archaeological and anthropological research into artisanal and industrial techniques, and for the first time couples seven different environmental systems into one holistic and coherent model.

"This model is built on the best available science, and what it's showing us is that if we want to reduce the amount of mercury in the environment, it's not enough to simply stabilize the amount that we're emitting," says Amos. "We would need to dramatically reduce it."

The results also draw attention to the contribution of historical emissions to the present-day mercury problem.

"Today, more than half of mercury emissions come from Asia, but historically the U.S. and Europe were major emitters," says second senior author Daniel J. Jacob, Vasco McCoy Family Professor of Atmospheric Chemistry and Environmental Engineering at Harvard SEAS and Professor of Earth and Planetary Sciences. "We find that half of mercury pollution in the present surface ocean comes from emissions prior to 1950, and as a result the contribution from the U.S. and Europe is comparable to that from Asia."

Other specific findings include the following:
•    Anthropogenic emissions have increased the amount of mercury in the atmosphere, surface ocean, and deep ocean by factors of 7.5, 5.9, and 2.1, respectively, compared to natural conditions.
•    60 percent of the mercury currently being deposited in the atmosphere comes from legacy mercury, released by humans in the past, that continues to cycle throughout the environment. Only 13 percent of current mercury deposition is natural in origin. The remaining 27 percent comes from present-day anthropogenic emissions.
•    At least half of the current anthropogenic mercury content of the surface ocean originated before 1950.

"The projections of atmospheric mercury deposition and ocean concentrations that have informed policymakers developing the recent global mercury treaty underestimated the amount of future accumulation, because they did not account for the full burden of legacy mercury in the environment," notes Sunderland. "Our study reinforces the need for immediate and stringent emissions controls globally, to the extent technologically possible, to avoid future human health risks. Already, the costs of methylmercury exposure in Europe and the United States have been estimated at upwards of $15 billion."


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,400+ scientific posters on ePosters
  • More than 4,900+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Toxic Chemicals Found in Drinking Water of 33 States
High levels of fluorinated compounds have been linked to cancer, hormone disruption.
Thursday, August 11, 2016
Pesticide Found in 70 Percent of Massachusetts’ Honey Samples
New Harvard University study says that the pesticide commonly found in honey samples is implicated in Colony Collapse Disorder.
Monday, July 27, 2015
Seasonal CO2 Amplitude is Growing as More is Added to the Atmosphere
Northern Hemisphere terrestrial ecosystems are taking “deeper breaths,” according to a multi-agency study.
Friday, August 09, 2013
Progress in Energy Innovation, Development, and Deployment
As the financial and environmental costs of current-generation energy sources continue to mount, development and implementation of innovative new energy sources have become increasingly important.
Wednesday, May 15, 2013
U.S. Standards for ‘Safe’ Limits of PFCs in Drinking Water Appear too High for Children
A new environmental toxicity study has found that exposure limits for perfluorinated compounds (PFCs) found in drinking water appear to be 100 to 1,000 times too high.
Wednesday, May 08, 2013
Scientific News
Measuring Chemistry on a Chip
Researchers developing chemical sensor chip for sample analysis in a lab or monitoring air and water quality in the field.
Unravelling a Microbial Mess
Scientists have untangled the Kansas-based mess of microbes more fully than scientists have ever done for a sample of soil.
How Cloud Connectivity Can Combat the Reproducibility Crisis
This infographic explains the reproducibility crisis, and how cloud connectivity can help overcome this problem.
Toxic Chemicals Found in Drinking Water of 33 States
High levels of fluorinated compounds have been linked to cancer, hormone disruption.
Cancer-causing Chemical in Drinking Water Traced to Fire-Fighting Foam
Fire-fighting foam containing highly fluorinated chemicals is contaminating drinking water supplies around many of the nation’s military bases, airports and industrial sites.
BMAA Implicated in Neuro-Diseases
The neurotoxin BMAA is suspected to play a role in Alzheimer’s and Parkinson’s disease.
Soil Nitrogen Age Important for Precision Agriculture
Calculating the age of nitrogen in corn and soybean fields could lead to improved fertilizer application techniques.
Safe CO2 Storage Viable Following Tests
Successful trials in Australia have led to the discovery of an inexpensive method of stored CO2 monitoring underground.
Phosphorous Pollution Remains Major Issue
Phosphorus pollution of lakes is a major problem. Researchers now look to improve the state of the lakes, otherwise freshwater quality will suffer.
Detecting Pesticides, Nerve Gas With an Electronic Nose
Detecting pesticides and nerve gas in very low concentrations? An international team of researchers led by Ivo Stassen and Rob Ameloot from KU Leuven have made it possible.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,900+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!