Corporate Banner
Satellite Banner
Environmental Analysis
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Bacteria in Drinking Water are Key to Keeping it Clean

Published: Friday, August 16, 2013
Last Updated: Friday, August 16, 2013
Bookmark and Share
Bacteria commonly found in drinking water creates conditions which enable other- potentially harmful – bacteria to thrive, says research by engineers from the University of Sheffield.

The research, published in the latest issue of Water Science and Technology: Water Supply, points the way to more sophisticated and targeted methods of ensuring our drinking water remains safe to drink, while still reducing the need for chemical treatments and identifying potential hazards more quickly.

The research team, from the University of Sheffield’s Faculty of Engineering, studied four bacteria found in the city’s drinking water to see which combinations were more likely to produce a ‘biofilm’. Biofilms are layers of bacteria which form on the inner surfaces of water pipes.

“Biofilms can form on all water pipes and as these are usually non-harmful bacteria, they don’t present a problem,” explains lead researcher, Professor Catherine Biggs. “However, biofilms can also be a safe place for harmful bacteria such as Escherichia coli or Legionella to hide. If the bacterial growth is too heavy, it can break off into the water flow, which at best can make water discoloured or taste unpleasant and at worst can release more dangerous bacteria. Our research looks at what conditions enable biofilms to grow, so we can find ways to control the bacteria in our water supply more effectively.”

Funded by the Engineering and Physical Sciences Research Council, the research isolated four bacteria from water taken from a domestic tap: two were widely found in drinking water everywhere, one was less common and one was unique to Sheffield. The researchers mixed the bacteria in different combinations and found that, in isolation, none of them produced a biofilm. However, when any of the bacteria were combined with one of the common forms, called Methylobacterium, they formed a biofilm within 72 hours.

“Our findings show that this bacterium is acting as a bridge, enabling other bacteria to attach to surfaces and produce a biofilm and it’s likely that it’s not the only one that plays this role,” says Professor Biggs.

“This means it should be possible to control or even prevent the creation of biofilms in the water supply by targeting these particular bacteria, potentially reducing the need for high dosage chemical treatments.”

Domestic water supplies in the UK are regularly tested for levels of bacteria and, if these are too high, water is treated with greater concentrations of chlorine or pipe networks are flushed through to clear the problem. However, the standard tests look for indicator organisms rather than the individual types which are present. Testing methods being developed by the Sheffield team – as used in this research – involve DNA analysis to identify the specific types of bacteria present.

“The way we currently maintain clean water supplies is a little like using antibiotics without knowing what infection we’re treating,” says Professor Biggs. “Although it’s effective, it requires extensive use of chemicals or can put water supplies out of use to consumers for a period of time. Current testing methods also take time to produce results, while the bacteria are cultured from the samples taken.

“The DNA testing we’re developing will provide a fast and more sophisticated alternative, allowing water companies to fine tune their responses to the exact bacteria they find in the water system.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Battery Component Found to Harm Key Soil Microorganism
The material at the heart of the lithium ion batteries that power electric vehicles, laptop computers and smartphones has been shown to impair a key soil bacterium, according to new research.
Living a “Mixotrophic” Lifestyle
Some tiny plankton may have big effect on ocean’s carbon storage.
Living a “Mixotrophic” Lifestyle
Some tiny plankton may have big effect on ocean’s carbon storage.
Toxic Pollutants Found in Fish Across the World's Oceans
Scripps researchers' analysis shows highly variable pollutant concentrations in fish meat.
Global Nitrogen Footprint Mapped
Four countries cause almost half the world’s emissions, with developing countries tending to suffer local pollution caused by foreign demand.
Environmental Toxin May Increase Risk of Alzheimer's
First time scientists have observed brain tangles in an animal model through exposure to environmental toxin.
Global Ocean Warming has Doubled in Recent Decades
Lawrence Livermore scientists, working with National Oceanic and Atmospheric Administration and university colleagues, have found that half of the global ocean heat content increase since 1865 has occurred over the past two decades.
Single Molecule Detection of Contaminants, Explosives or Diseases
A technique that combines the ultrasensitivity of surface-enhanced Raman scattering (SERS) with a slippery surface invented by Penn State researchers will make it feasible to detect single molecules of a number of chemical and biological species from gaseous, liquid or solid samples.
Super-Fine Solution to Sponge Up Micropollutants
A super-fine form of powdered activated carbon captures micropollutants more rapidly than the conventional kind and could by used in Swiss wastewater treatment plants, say EPFL researchers in a new study.
Cleaning Wastewater with Pond Scum
A blob of algae scooped from a fountain on South Street almost two years ago, has seeded a crop of the green stuff that Drexel University researchers claim is more effective at treating wastewater than many of the processes employed in municipal facilities today.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!