Corporate Banner
Satellite Banner
Environmental Analysis
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Wood Chips Could Help Cleanse Farm Field Run-Off

Published: Wednesday, October 23, 2013
Last Updated: Wednesday, October 23, 2013
Bookmark and Share
Cornell hydrologists may have found a simple solution to a complex pollution problem caused by agricultural run-off: wood chips.

By strategically placing organic matter to stanchion the water flow between farmers’ fields and nearby ditches and streams, he hopes to trigger a natural chemical reaction in which bacteria capture nitrogen in the run-off and help transform it into less dangerous gaseous forms.

According to Walter, associate professor of biological and environmental engineering, the drainage systems that help salvage wet fields can also help ferry pollutants into our water supply. “Tile drains” – which are actually perforated pipes – quickly whisk water away from fields before it has a chance to soak through landscape and benefit from natural “filtration” processes. This can lead to elevated levels of nitrogen, phosphorous and other nutrients found in fertilizer that feed algal blooms and rob waterways of oxygen needed to support fish and other life forms.

“It’s a big problem in New York. It’s a big problem everywhere. We are a little desperate to find some way to get rid of nitrates,” Walter said.

His solution is to dig large square trenches that are then filled with wood chips and buried. The field drains would flow into these “bioreactors.” The decomposition of the wood chips would release carbon that feed bacteria. The bacteria, in turn, would use nitrate from the run-off water as part of their respiration process, converting it to nitrate gas.

Some of the trenches will also contain biochar, a charcoal-like material created from the carbonization of biomass, which has been shown to help absorb phosphorous and pesticides in soil. Finding natural ways to control that pollutant as well would be a valuable added bonus, Walter said.

Early proof-of-concept experiments at the Homer C. Thompson Vegetable Research Farm in Freeville, N.Y. – funded in part by $90,000 of Cornell University Agricultural Experiment Station U.S. Department of Agriculture (USDA) Hatch funds – showed promising results, enough to prompt the USDA to award Walter and his colleagues – Steenhuis, professor of biological and environmental engineering, and Geohring, senior extension associate – an additional $530,000 to do further studies at a larger scale.

They will work with four or five farms in Upper Susquehanna, in the Chesapeake Bay watershed, where an estimated 300 million pounds of polluting nitrogen has led to poor water quality and a spot on the Environmental Protection Agency’s “dirty waters” list.

Similar techniques have been tested in the Midwest; in Iowa, environmental incentives have been set up to help defray the costs of installation, which range from $7,000 to $10,000 to treat drainage from 30 to 100 acres.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More than 5,000+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Measuring Chemistry on a Chip
Researchers developing chemical sensor chip for sample analysis in a lab or monitoring air and water quality in the field.
Thursday, August 18, 2016
On the Environmental Trail of Food Pathogens
Learning where Listeria dwells can aid the search for other food pathogens.
Tuesday, December 23, 2014
Fracking Flowback Could Indirectly Pollute Groundwater
Chemical makeup of wastewater could cause the release of tiny particles in soils that often strongly bind heavy metals and pollutants.
Friday, June 27, 2014
Federal Grants will Fund Study of Food System, Environment
Cornell University grant will help tackle some of the biggest questions in affecting agriculture.
Thursday, November 01, 2012
Cornell to Partner with DEC, Local Stakeholders on Cayuga Lake Water Quality
Partnership aims to improve Cayuga's waters.
Tuesday, October 23, 2012
Using Electroactive Bacteria, Students Design Toxin Sensor
Designed to detect the toxic substances arsenic and naphthalene in water by using electroactive bacterial species S. oneidensis MR-1.
Thursday, October 04, 2012
Scientific News
Washing Clothes Releases Microplastic Particles
Research suggests that over 700,000 microfibres could be released in waste water with every run of a domestic washing machine.
Atmosphere Acidity Minimised to Preindustrial Levels
Sheet ice study shows acidic pollution of the atmosphere has now almost returned to preindustrial levels.
Detecting Hazardous Substances in Water
Scientists develop device for the rapid analysis for hazardous substance content in liquids.
Environmental Impact of GM Crops
Following the adoption of GM crops, insecticide usage decreases but herbicide use increases, study shows.
Water Dynamics Affect Coral Reefs
Understanding what aids or degrades these ecosystems can help focus conservation efforts on reefs that are most likely to survive global warming.
Impact of Emerging Contaminants in Our Water Supply
Emerging contaminants, any synthetic or naturally occurring chemical not commonly monitored in the environment, in our water supply are becoming of increasing concern due to their potential ecological and/or human health effects.
Study Finds Mercury Contamination Across Western N. America
BRI research results found widespread mercury contamination at various levels across Western North America.
Device Improves Measurement of Water Pollution
Researchers have developed a device that makes it easier to measure contaminant levels in water.
Changing Ocean Chemistry Due To Human Activity
More anthropogenic carbon in the northeast Pacific means weaker shells for many marine species.
Sensor Could Help Fight Bacterial Infections
The sensor can detect E.coli bacteria in 15-20 minutes over a wide temperature range, offering a fast and cost effective tests.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,000+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!