Corporate Banner
Satellite Banner
Environmental Analysis
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Wood Chips Could Help Cleanse Farm Field Run-Off

Published: Wednesday, October 23, 2013
Last Updated: Wednesday, October 23, 2013
Bookmark and Share
Cornell hydrologists may have found a simple solution to a complex pollution problem caused by agricultural run-off: wood chips.

By strategically placing organic matter to stanchion the water flow between farmers’ fields and nearby ditches and streams, he hopes to trigger a natural chemical reaction in which bacteria capture nitrogen in the run-off and help transform it into less dangerous gaseous forms.

According to Walter, associate professor of biological and environmental engineering, the drainage systems that help salvage wet fields can also help ferry pollutants into our water supply. “Tile drains” – which are actually perforated pipes – quickly whisk water away from fields before it has a chance to soak through landscape and benefit from natural “filtration” processes. This can lead to elevated levels of nitrogen, phosphorous and other nutrients found in fertilizer that feed algal blooms and rob waterways of oxygen needed to support fish and other life forms.

“It’s a big problem in New York. It’s a big problem everywhere. We are a little desperate to find some way to get rid of nitrates,” Walter said.

His solution is to dig large square trenches that are then filled with wood chips and buried. The field drains would flow into these “bioreactors.” The decomposition of the wood chips would release carbon that feed bacteria. The bacteria, in turn, would use nitrate from the run-off water as part of their respiration process, converting it to nitrate gas.

Some of the trenches will also contain biochar, a charcoal-like material created from the carbonization of biomass, which has been shown to help absorb phosphorous and pesticides in soil. Finding natural ways to control that pollutant as well would be a valuable added bonus, Walter said.

Early proof-of-concept experiments at the Homer C. Thompson Vegetable Research Farm in Freeville, N.Y. – funded in part by $90,000 of Cornell University Agricultural Experiment Station U.S. Department of Agriculture (USDA) Hatch funds – showed promising results, enough to prompt the USDA to award Walter and his colleagues – Steenhuis, professor of biological and environmental engineering, and Geohring, senior extension associate – an additional $530,000 to do further studies at a larger scale.

They will work with four or five farms in Upper Susquehanna, in the Chesapeake Bay watershed, where an estimated 300 million pounds of polluting nitrogen has led to poor water quality and a spot on the Environmental Protection Agency’s “dirty waters” list.

Similar techniques have been tested in the Midwest; in Iowa, environmental incentives have been set up to help defray the costs of installation, which range from $7,000 to $10,000 to treat drainage from 30 to 100 acres.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

On the Environmental Trail of Food Pathogens
Learning where Listeria dwells can aid the search for other food pathogens.
Tuesday, December 23, 2014
Fracking Flowback Could Indirectly Pollute Groundwater
Chemical makeup of wastewater could cause the release of tiny particles in soils that often strongly bind heavy metals and pollutants.
Friday, June 27, 2014
Federal Grants will Fund Study of Food System, Environment
Cornell University grant will help tackle some of the biggest questions in affecting agriculture.
Thursday, November 01, 2012
Cornell to Partner with DEC, Local Stakeholders on Cayuga Lake Water Quality
Partnership aims to improve Cayuga's waters.
Tuesday, October 23, 2012
Using Electroactive Bacteria, Students Design Toxin Sensor
Designed to detect the toxic substances arsenic and naphthalene in water by using electroactive bacterial species S. oneidensis MR-1.
Thursday, October 04, 2012
Scientific News
Low-level Arsenic Exposure Before Birth Associated with Early Puberty in Female Mice
Study examine whether low-dose arsenic exposure could have similar health outcomes in humans.
Intensity of Desert Storms May Affect Ocean Phytoplankton
MIT study finds phytoplankton are extremely sensitive to changing levels of desert dust.
Determination of Phosphate in Soil Extracts in the Field: A Green Chemistry Enzymatic Method
New method for phosphate determination which can be carried out in the field to obtain results on the spot.
Open-Source Photometric System for Enzymatic Nitrate Quantification
New method proposed for developing a cheaper, more accessible open-source water testing platform capable of performing Nitrate Reductase Nitrate-Nitrogen Analysis.
Toxic Algae is a Threat to Our Water
A report concludes that blooms of toxic cyanobacteria, or blue-green algae, are a poorly monitored and underappreciated risk to recreational and drinking water quality in the U.S., and may increasingly pose a global health threat.
Significant Part of Greenhouse Gas Emissions Comes From River and Sea Organisms
Running streams are key sources of the greenhouse gas carbon dioxide, but why is it so?
Better Estimates of Worldwide Mercury Pollution
New findings show Asia produces twice as much mercury emissions as previously thought.
Real-Time Data for Cancer Therapy
Biochemical sensor implanted at initial biopsy could allow doctors to better monitor and adjust cancer treatments.
New Biosensors for Managing Microbial ‘Workers’
Researchers at Harvard’s Wyss Institute have unveiled new biosensors that enable scientists to more effectively control and 'communicate with' engineered bacteria.
Playing 'Tag' with Pollution lets Scientists See Who's It
Using a climate model that can tag sources of soot from different global regions and can track where it lands on the Tibetan Plateau, researchers have determined which areas around the plateau contribute the most soot — and where.
Scroll Up
Scroll Down
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!