Corporate Banner
Satellite Banner
Environmental Analysis
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Scientists at the Chinese Academy of Sciences Use the Linkam CAP500 Heating Stage

Published: Thursday, October 31, 2013
Last Updated: Wednesday, October 30, 2013
Bookmark and Share
Use of CAP500 stage for extreme deep sea research at SIDSSE.

Linkam Scientific Instruments, report on the use of their innovative CAP500 heating stage for geological research at the new Sanya Institute of Deep-sea Science and Engineering (SIDSSE) of the Chinese Academy of Sciences.

Founded in 1956, The Chinese Academy of Geological Sciences is devoted to scientific investigation and research on basic, hydro, environmental, and karst geology.

Further areas of interest are exploration geophysics and geochemistry; rock and mineral analysis; and efficient mineral resources utilization.

A new modern hydrothermal laboratory is being built as part of the new Sanya Institute of Deep-sea Science and Engineering (SIDSSE), a division of the Chinese Academy of Geological Sciences.

Dr I-Ming Chou, a leading scientist behind the creation of the SIDSSE laboratory, and his colleagues are using the CAP500 stage to conduct experimental studies of extreme deep-sea conditions.

He said: "the sea floor is a frontier for current and future human exploration. The recent successful dive of manned submersible Jiaolong at the depth of 7062m was one of the major scientific achievements of China. This accomplishment provided us with great opportunities for exploring the sea floor, especially the hadal zones that have previously been inaccessible to us. This will facilitate important new research and establish hadal sciences in China. We will also be able to explore and study the life, environments, and geodynamics at the deepest part of the Earth's surface, as well as to formulate possible models for the geological processes that occurred or will occur beneath the sea floor."

To further their geological research the scientists are using the prototype Linkam CAP500 stage. The CAP500 system can control up to 50mm of quartz capillary at high pressure (600bar) from -196°C to 500°C.

In relation to the stage Dr Chou said: "We are beta testing this system with a number of different labs at the moment. Sample temperatures are controlled using a T95 controller with a T95 LinkPad and LNP95 cooling system through Linksys32 temperature control and video capture software. A capillary tube of HPOC can be inserted into a channel (1mm wide and 0.6mm deep) of a silver block (20mm x 50mm). Optical cells have fused silica windows for the study of geological fluids. A small aperture through the centre of the stage, allows samples to be viewed with transmitted light while its design minimizes the temperature gradient along its length."

Dr Chou noted: "The simulated pressure-temperature conditions we can create using the CAP500 will cover hydrothermal vents, hadal zones, and trenches (from 1 to 400°C and up to 600bar). A major advantage of the high-pressure optical cells is the transparency of its windows. This allows the in situ observations and spectroscopic analyses of the samples, and continuous recording during experiments for later review. Using optical cells allows us to not only observe many geological processes at higher P-T conditions, but also characterize geological samples in the cells by using advanced spectroscopic tools, including Raman spectroscopy and synchrotron X-ray spectroscopy. Optical cells with fused silica windows are particularly suitable for the study of organic systems and for systems containing sulphur. Furthermore, fluid standards with known composition and pressure can be prepared in these types of cells for quantitative Raman analyses of either natural or synthetic fluids."

When asked about the stage, Dr Chou said: "the stage has the following advantages for the study of geological fluids at P-T conditions up to 500°C and 600bar: it has (1) fluid samples which are easy to load; (2) greater Raman signal intensity; (3) sample pressures which can be measured directly when the HPOC is used; and is (4) easy to operate; and (5) less expensive than other systems on the market."


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,300+ scientific posters on ePosters
  • More than 4,800+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Safe CO2 Storage Viable Following Tests
Successful trials in Australia have led to the discovery of an inexpensive method of stored CO2 monitoring underground.
Phosphorous Pollution Remains Major Issue
Phosphorus pollution of lakes is a major problem. Researchers now look to improve the state of the lakes, otherwise freshwater quality will suffer.
Detecting Pesticides, Nerve Gas With an Electronic Nose
Detecting pesticides and nerve gas in very low concentrations? An international team of researchers led by Ivo Stassen and Rob Ameloot from KU Leuven have made it possible.
Carbon Capture Breakthrough
Chemists from the University of York have developed a new, green, CO2 capture system with a focus around reducing large scale emissions.
Massive Helium Discovery a "Game Changer" for Medical Industry
A new development is gas exploration has yielded the discovery of a huge helium gas field, which could help relieve the dwindling supply.
NASA Study Explains Sea Ice Differences at Poles
NASA-led study uses satellite and environmental data to shed light on differences in sea ice formation between Arctic and Antarctic.
Wireless, Wearable Toxic-Gas Detector
Inexpensive sensors could be worn by soldiers to detect hazardous chemical agents.
Tracking The Aluminum Used To Purify Tap Water
Kobe University researchers demonstrate a new analysis method to measure the concentration of aluminium used to purify tap water.
Electronic Sensor Tells Dead Bacteria From Live
The sensor, which measures 'osmoregulation', is a potential future tool for medicine and food safety.
What Makes a Good Scientist?
It’s the journey, not just the destination that counts as a scientist when conducting research.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,300+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,800+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!