Corporate Banner
Satellite Banner
Environmental Analysis
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Ancient Climate from Plankton Shells

Published: Monday, November 04, 2013
Last Updated: Monday, November 04, 2013
Bookmark and Share
Climate changes from millions of years ago are recorded at daily rate in ancient sea shells, new research shows.

Using the Advanced Light Source (ALS) in California, scientists have revealed growth bands in plankton shells that show how shell chemistry records the sea temperature. Work currently continues at Diamond Light Source.

The results could allow researchers to chart short timescale changes in ocean temperatures hundreds of millions of years ago.

Plankton shells show features like tree rings, recording historical climate.

 It’s important to understand current climate change in the light of how climate has varied in the geological past. One way to do this, for the last few thousand years, is to analyse ice from the poles. The planet’s temperature and atmosphere are recorded by bubbles of ancient air trapped in polar ice cores. The oldest Antarctic ice core records date back to around 800,000 years ago. 

As microbial plankton grow in ocean waters, their shells, made of the mineral calcite, trap trace amounts of chemical impurities, maybe only a few atoms in a million getting replaced by impurity atoms. Scientists have noticed that plankton growing in warmer waters contain more impurities, but it has not been clear how and why this “proxy” for temperature works. 

When the plankton die, they fall to the muddy ocean floor, and can be recovered today from that muddy ocean floor sediments, which preserve the shells as they are buried. The amount of impurity, measured in fossil plankton shells, provides a record of past ocean temperature, dating back more than 100 million years ago. 

Now, researchers from the Department of Earth Sciences at the University of Cambridge have measured traces of magnesium in the shells of plankton using the “Advanced Light Source” synchrotron in Berkeley, California.

The powerful X-ray microscope has revealed narrow nanoscale bands in the plankton shell where the amount of magnesium is very slightly higher, at length scales as small as one hundredth that of a human hair. They are growth bands, rather like tree rings, but in plankton the bands occur daily or so, rather than yearly. 

“These growth bands in plankton show the day by day variations in magnesium in the shell at a 30 nanometre length scale. For slow-growing plankton it opens the way to seeing seasonal variations in ocean temperatures or plankton growth in samples dating back tens to hundreds of millions of years”, says Professor Simon Redfern, one of the experimenters on the project. 

“Our X-ray data show that the trace magnesium sits inside the crystalline mineral structure of the plankton shell. That’s important because it validates previous assumptions about using magnesium contents as a measure of past ocean temperature.”

The chemical environment of the trace elements in the plankton shell, revealed in the new measurements, shows that the magnesium sits in calcite crystal replacing calcium, rather than in microbial membranes in their impurities in the shell. This helps explain why temperature affects the chemistry of plankton shells - warmer waters favour increased magnesium in calcite.

The group are now using Diamond's Imaging and Coherence beamline (I13) to measure how plankton shells grow and whether they change at all in the ocean floor sediments. Their latest results could allow scientists to establish climate variability in Earth’s far distant past, as well as providing new routes to measure ocean acidification and salinity in past oceans.

Results published in the journal Earth and Planetary Sciences Letters.  


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,000+ scientific posters on ePosters
  • More than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Paper Filter Can Remove Viruses from Water
A new paper filter can purify water from viruses, even the most difficult and contagious.
Changing California Land Uses will Shape Water Demands in 2062
If past patterns of California land-use change continue, projected water needs by the year 2062 will increase beyond current supply.
Chemical Emitted by Trees Can Impact Ozone Levels
Researchers have found that the way that isoprene, a natural hydrocarbon compound emitted from broadleaf deciduous trees, is processed in the atmosphere at night can have a big impact on the ozone in the atmosphere the next day.
A New Sensor to Assess the Biodiversity in the Atmosphere
UPM researchers design a portable autonomous device capable of collecting and assessing bacterial, viral and fungal biodiversity in the air as well as pollen in different urban areas and seasons.
Measuring The Airborne Toxicants Urban Bicyclists Inhale
Researchers analyze breath biomarkers to measure uptake of volatile organic compounds by bicyclists.
Elevated Bladder Cancer Risk in New England and Arsenic in Drinking Water From Private Wells
Researchers have found that drinking water from private wells, may have contributed to the elevated risk of bladder cancer in northern new England.
Detecting Nano Amounts In Environmental Samples
The NanoUmwelt project is developing a technique that can detect nanomaterials in a variety of environmental samples.
Bioreactors Ready for the Big Time
Bioreactors are passive filtration systems that can reduce nitrate losses from farm fields.
Microbial Biosensor Designed To Evaluate Water Toxicity
UAB researchers develop new paper-based biological tool.
Coding and Computers Help Spot Methane, Explosives
Coded apertures improve and shrink mass spectrometers for field use.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!