Corporate Banner
Satellite Banner
Environmental Analysis
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Even if Emissions Stop, Carbon Dioxide Could Warm Earth for Centuries

Published: Monday, November 25, 2013
Last Updated: Monday, November 25, 2013
Bookmark and Share
Study suggests that it might take a lot less carbon than previously thought to reach the global temperature scientists deem unsafe.

Even if carbon dioxide emissions came to a sudden halt, the carbon dioxide already in Earth's atmosphere could continue to warm our planet for hundreds of years, according to Princeton University-led research published in the journal Nature Climate Change. 

The researchers simulated an Earth on which, after 1,800 billion tons of carbon entered the atmosphere, all carbon dioxide emissions suddenly stopped. Scientists commonly use the scenario of emissions screeching to a stop to gauge the heat-trapping staying power of carbon dioxide. Within a millennium of this simulated shutoff, the carbon itself faded steadily with 40 percent absorbed by Earth's oceans and landmasses within 20 years and 80 percent soaked up at the end of the 1,000 years.

By itself, such a decrease of atmospheric carbon dioxide should lead to cooling. But the heat trapped by the carbon dioxide took a divergent track.

After a century of cooling, the planet warmed by 0.37 degrees Celsius (0.66 Fahrenheit) during the next 400 years as the ocean absorbed less and less heat. While the resulting temperature spike seems slight, a little heat goes a long way here. Earth has warmed by only 0.85 degrees Celsius (1.5 degrees Fahrenheit) since pre-industrial times.

The Intergovernmental Panel on Climate Change estimates that global temperatures a mere 2 degrees Celsius (3.6 degrees Fahrenheit) higher than pre-industrial levels would dangerously interfere with the climate system. To avoid that point would mean humans have to keep cumulative carbon dioxide emissions below 1,000 billion tons of carbon, about half of which has already been put into the atmosphere since the dawn of industry.

The lingering warming effect the researchers found, however, suggests that the 2-degree point may be reached with much less carbon, said first author Thomas Frölicher, who conducted the work as a postdoctoral researcher in Princeton's Program in Atmospheric and Oceanic Sciences under co-author Jorge Sarmiento, the George J. Magee Professor of Geoscience and Geological Engineering.

"If our results are correct, the total carbon emissions required to stay below 2 degrees of warming would have to be three-quarters of previous estimates, only 750 billion tons instead of 1,000 billion tons of carbon," said Frölicher, now a researcher at the Swiss Federal Institute of Technology in Zurich. "Thus, limiting the warming to 2 degrees would require keeping future cumulative carbon emissions below 250 billion tons, only half of the already emitted amount of 500 billion tons.”

The researchers' work contradicts a scientific consensus that the global temperature would remain constant or decline if emissions were suddenly cut to zero. But previous research did not account for a gradual reduction in the oceans' ability to absorb heat from the atmosphere, particularly the polar oceans, Frölicher said. Although carbon dioxide steadily dissipates, Frölicher and his co-authors were able to see that the oceans that remove heat from the atmosphere gradually take up less. Eventually, the residual heat offsets the cooling that occurred due to dwindling amounts of carbon dioxide.

Frölicher and his co-authors showed that the change in ocean heat uptake in the polar regions has a larger effect on global mean temperature than a change in low-latitude oceans, a mechanism known as "ocean-heat uptake efficacy." This mechanism was first explored in a 2010 paper by Frölicher's co-author, Michael Winton, a researcher at the National Oceanic and Atmospheric Administration's Geophysical Fluid Dynamics Laboratory (GFDL) on Princeton's Forrestal Campus.

"The regional uptake of heat plays a central role. Previous models have not really represented that very well," Frölicher said.

"Scientists have thought that the temperature stays constant or declines once emissions stop, but now we show that the possibility of a temperature increase can not be excluded," Frölicher said. "This is illustrative of how difficult it may be to reverse climate change — we stop the emissions, but still get an increase in the global mean temperature."

The paper, "Continued global warming after CO2 emissions stoppage," was published Nov. 24 by Nature Climate Change. Funding for the work was provided by the Swiss National Science Foundation (Ambizione grant PZ00P2_142573) and Princeton University Carbon Mitigation Initiative.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,000+ scientific posters on ePosters
  • More than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Parasite Metabolism can Foretell Disease Ranges under Climate Change
Knowing the temperatures that viruses, bacteria, worms and all other parasites need to grow and survive could help determine the future range of infectious diseases under climate change.
Thursday, February 28, 2013
Scientific News
Paper Filter Can Remove Viruses from Water
A new paper filter can purify water from viruses, even the most difficult and contagious.
Changing California Land Uses will Shape Water Demands in 2062
If past patterns of California land-use change continue, projected water needs by the year 2062 will increase beyond current supply.
Chemical Emitted by Trees Can Impact Ozone Levels
Researchers have found that the way that isoprene, a natural hydrocarbon compound emitted from broadleaf deciduous trees, is processed in the atmosphere at night can have a big impact on the ozone in the atmosphere the next day.
A New Sensor to Assess the Biodiversity in the Atmosphere
UPM researchers design a portable autonomous device capable of collecting and assessing bacterial, viral and fungal biodiversity in the air as well as pollen in different urban areas and seasons.
Measuring The Airborne Toxicants Urban Bicyclists Inhale
Researchers analyze breath biomarkers to measure uptake of volatile organic compounds by bicyclists.
Elevated Bladder Cancer Risk in New England and Arsenic in Drinking Water From Private Wells
Researchers have found that drinking water from private wells, may have contributed to the elevated risk of bladder cancer in northern new England.
Detecting Nano Amounts In Environmental Samples
The NanoUmwelt project is developing a technique that can detect nanomaterials in a variety of environmental samples.
Bioreactors Ready for the Big Time
Bioreactors are passive filtration systems that can reduce nitrate losses from farm fields.
Microbial Biosensor Designed To Evaluate Water Toxicity
UAB researchers develop new paper-based biological tool.
Coding and Computers Help Spot Methane, Explosives
Coded apertures improve and shrink mass spectrometers for field use.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!