Corporate Banner
Satellite Banner
Environmental Analysis
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Rice Scientists ID New Catalyst for Cleanup of Nitrites

Published: Monday, December 02, 2013
Last Updated: Monday, December 02, 2013
Bookmark and Share
Gold-palladium nanocatalysts set new mark for breakdown of nitrites.

Chemical engineers at Rice University have found a new catalyst that can rapidly break down nitrites, a common and harmful contaminant in drinking water that often results from overuse of agricultural fertilizers.

Nitrites and their more abundant cousins, nitrates, are inorganic compounds that are often found in both groundwater and surface water. The compounds are a health hazard, and the Environmental Protection Agency places strict limits on the amount of nitrates and nitrites in drinking water. While it’s possible to remove nitrates and nitrites from water with filters and resins, the process can be prohibitively expensive.

“This is a big problem, particularly for agricultural communities, and there aren’t really any good options for dealing with it,” said Michael Wong, professor of chemical and biomolecular engineering at Rice and the lead researcher on the new study. “Our group has studied engineered gold and palladium nanocatalysts for several years. We’ve tested these against chlorinated solvents for almost a decade, and in looking for other potential uses for these we stumbled onto some studies about palladium catalysts being used to treat nitrates and nitrites; so we decided to do a comparison.”

Catalysts are the matchmakers of the molecular world: They cause other compounds to react with one another, often by bringing them into close proximity, but the catalysts are not consumed by the reaction.

In a new paper in the journal Nanoscale, Wong’s team showed that engineered nanoparticles of gold and palladium were several times more efficient at breaking down nitrites than any previously studied catalysts. The particles, which were invented at Wong’s Catalysis and Nanomaterials Laboratory, consist of a solid gold core that’s partially covered with palladium.

Over the past decade, Wong’s team has found these gold-palladium composites have faster reaction times for breaking down chlorinated pollutants than do any other known catalysts. He said the same proved true for nitrites, for reasons that are still unknown.

“There’s no chlorine in these compounds, so the chemistry is completely different,” Wong said. “It’s not yet clear how the gold and palladium work together to boost the reaction time in nitrites and why reaction efficiency spiked when the nanoparticles had about 80 percent palladium coverage. We have several hypotheses we are testing out now. ”

He said that gold-palladium nanocatalysts with the optimal formulation were about 15 times more efficient at breaking down nitrites than were pure palladium nanocatalysts, and about 7 1/2 times more efficient than catalysts made of palladium and aluminum oxide.

Wong said he can envision using the gold-palladium catalysts in a small filtration unit that could be attached to a water tap, but only if the team finds a similarly efficient catalyst for breaking down nitrates, which are even more abundant pollutants than nitrites.

“Nitrites form wherever you have nitrates, which are really the root of the problem,” Wong said. “We’re actively studying a number of candidates for degrading nitrates now, and we have some positive leads.”


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Water-cleanup Catalysts Tackle Biomass Upgrading
Rice University researchers register 4th ‘volcano plot’ for palladium-gold catalysts.
Tuesday, July 01, 2014
Graphene Oxide Soaks Up Radioactive Waste
Rice, Moscow State universities collaborate on solution to toxic groundwater woes.
Tuesday, January 15, 2013
Scientific News
Playing 'Tag' with Pollution lets Scientists See Who's It
Using a climate model that can tag sources of soot from different global regions and can track where it lands on the Tibetan Plateau, researchers have determined which areas around the plateau contribute the most soot — and where.
Pesticide Found in 70 Percent of Massachusetts’ Honey Samples
New Harvard University study says that the pesticide commonly found in honey samples is implicated in Colony Collapse Disorder.
Ocean Acidfication may have a Dramatic Affect on Marine Life
Study finds many species may die out and others may migrate significantly as ocean acidification intensifies.
Nanoparticles Can Clean Up Environmental Pollutants
Researchers have found that nanomaterials and UV light can “trap” chemicals for easy removal from soil and water.
Fossil Fuel Emissions will Complicate Radiocarbon Dating, Warns Scientist
The paper is published in the journal PNAS.
New Research will Show How the Environment Could Change the Way We Eat
A new study funded by the Wellcome Trust will investigate how environmental changes over the next 20-30 years may impact the way we eat, in the UK and worldwide.
Bedside Ebola Diagnostic
A new test can accurately diagnose Ebola virus disease within minutes, providing clinicians with crucial information for treating patients and containing outbreaks.
The Deep Carbon Cycle
Over billions of years, the total carbon content of the outer part of the Earth—in its upper mantle, crust, oceans and atmospheres—has gradually increased, scientists report.
Profiling DNA Viruses in Arctic Lakes
The Arctic's freshwater lakes contain viral communities composed of DNA viruses from lineages that are largely distinct from those described elsewhere, a new study suggests.
Unravelling the Mysteries of Carbonic Acid
Researchers have shown how gaseous carbon dioxide molecules are solvated by water to initiate the proton transfer chemistry that produces carbonic acid and bicarbonate.
Scroll Up
Scroll Down
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!