Corporate Banner
Satellite Banner
Environmental Analysis
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Study Finds Piece-by-Piece Approach to Emissions Policies Can be Effective

Published: Tuesday, December 17, 2013
Last Updated: Tuesday, December 17, 2013
Bookmark and Share
New analysis shows that policies addressing energy consumption and technology choices individually can play an important part in reducing emissions.

Discussions on curbing climate change tend to focus on comprehensive, emissions-focused measures: a global cap-and-trade scheme aimed at controlling carbon, or a tax on all carbon emissions.

But a new study by researchers at MIT finds that a “segmental” approach - involving separate targeting of energy choices and energy consumption through regulations or incentives - can play an important role in achieving emission reductions.

The new study, by assistant professor of engineering systems Jessika Trancik, is being published this week in the journal Environmental Science and Technology.

Trancik is joined on the paper by three MIT graduate students: Michael Chang and Christina Karapataki of the Engineering Systems Division and Leah Stokes of the Department of Urban Studies and Planning.

“A policy that’s focused on controlling carbon emissions is a different kind of policy than one that’s focused on the underlying demand-side and supply-side technology drivers,” Trancik says. And while those calling for sweeping, emission-focused policies have often faced uphill battles in regions, states, and nations, a wide variety of segmental policies have been adopted by such jurisdictions, making it important to understand the effectiveness of such approaches, she says.

“There are some things that these segmental policies do very well,” Trancik says - in particular dealing with the inertia associated with existing infrastructure. “It will be expensive to retire new power plants early, and so with each power plant built we are committing to emissions not just today, but in future years,” she says.

“Compliance with a carbon-focused policy can come either from changes in energy consumption levels or technological change, and a set of segmental policies can ensure that both types of change happen concurrently,” Trancik says. Comprehensive, carbon-limiting policies would not allow that kind of targeted approach, she adds.

The issue is urgent, Trancik says: The paper shows that when accounting for infrastructural inertia, the carbon intensity of new plants built over the coming decade - that is, the amount of carbon dioxide emitted per megawatt of power produced - will need to be reduced by 50 percent, as compared to today’s levels, in order to meet emissions-reduction commitments that have been made by most nations.

“Many nations are generally moving in the direction of segmental policies,” Trancik says, so it is important to understand how effective these policies can be.

The study found pluses and minuses to both segmental and carbon-focused approaches to reducing emissions, Trancik says, adding that what may ultimately be needed is a carefully planned combination of both. The ideal may be a hierarchical approach, she says, “that would involve capping carbon dioxide emissions, but then using these segmental policies to address particular areas of concern, where the market alone may not have sufficient foresight.”

These issues are at the heart of climate negotiations. Trancik notes that “understanding the various drivers of emissions, and how influencing each can affect overall emissions, is important to moving these discussions forward. A global agreement on carbon emissions would be most effective at reducing the risks of climate change, but in the meantime a segmental approach can be helpful.”

An added benefit, Trancik notes, is that discussing segmental approaches is likely to lead to a greater understanding of where emissions reductions might come from, which may eventually make it easier to reach an agreement on limiting carbon emissions directly.

Decisions made over the next decade will have long-lasting effects on overall emissions, Trancik says, so it’s important to perform such analysis now. “Can we control emissions sufficiently through these segmental policies?” she asks. “How might approaches focused on new technologies and on energy efficiency work together?”

The research was funded by the Solomon Buchsbaum Research Fund.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Intensity of Desert Storms May Affect Ocean Phytoplankton
MIT study finds phytoplankton are extremely sensitive to changing levels of desert dust.
Tuesday, September 01, 2015
Better Estimates of Worldwide Mercury Pollution
New findings show Asia produces twice as much mercury emissions as previously thought.
Thursday, August 13, 2015
Real-Time Data for Cancer Therapy
Biochemical sensor implanted at initial biopsy could allow doctors to better monitor and adjust cancer treatments.
Thursday, August 06, 2015
Nanoparticles Can Clean Up Environmental Pollutants
Researchers have found that nanomaterials and UV light can “trap” chemicals for easy removal from soil and water.
Thursday, July 23, 2015
New Detector Sniffs Out Origins Of Methane
Instrument identifies methane’s origins in mines, deep-sea vents, and cows.
Friday, March 06, 2015
Solving Carbon Mysteries of the Deep Ocean
New research from MIT and the Woods Hole Oceanographic Institute reveals a hidden deep-ocean carbon cycle.
Saturday, February 21, 2015
How to Make Stronger, “Greener” Cement
Analysis of material’s molecular structure leads to a new formula that could cut greenhouse-gas emissions.
Tuesday, September 30, 2014
Mass Spectrometry in Your Hand
Electrospray arrays can dramatically downsize systems and costs for onsite chemical analysis and many other applications.
Tuesday, September 16, 2014
The Power of Salt
MIT study investigates power generation from the meeting of river water and seawater.
Wednesday, August 20, 2014
MIT Announces New Initiative on Environment
Multidisciplinary program, to be led by Susan Solomon, will encourage collaborations among researchers in different fields.
Thursday, May 08, 2014
How to Count Methane Emissions
Study provides new metric for comparing the greenhouse gases methane and carbon dioxide.
Tuesday, April 29, 2014
Researchers Find that Going with the Flow Makes Bacteria Stick
In surprising new discovery, scientists show that microbes are more likely to adhere to tube walls when water is moving.
Tuesday, February 25, 2014
Storing Carbon in the Arctic
While the Arctic Ocean is largely a carbon sink, researchers find parts are also a source of atmospheric carbon dioxide.
Wednesday, December 04, 2013
How do we Balance Needs Of Energy, Water, and Climate?
MIT study underscores need to examine trade-offs before choosing energy technologies.
Friday, November 15, 2013
Study Estimates Extent to Which Air Pollution in China Shortens Human Lives
New quasi-experimental research finds major impact of coal emissions on health.
Wednesday, July 10, 2013
Scientific News
Low-level Arsenic Exposure Before Birth Associated with Early Puberty in Female Mice
Study examine whether low-dose arsenic exposure could have similar health outcomes in humans.
Intensity of Desert Storms May Affect Ocean Phytoplankton
MIT study finds phytoplankton are extremely sensitive to changing levels of desert dust.
Determination of Phosphate in Soil Extracts in the Field: A Green Chemistry Enzymatic Method
New method for phosphate determination which can be carried out in the field to obtain results on the spot.
Open-Source Photometric System for Enzymatic Nitrate Quantification
New method proposed for developing a cheaper, more accessible open-source water testing platform capable of performing Nitrate Reductase Nitrate-Nitrogen Analysis.
Toxic Algae is a Threat to Our Water
A report concludes that blooms of toxic cyanobacteria, or blue-green algae, are a poorly monitored and underappreciated risk to recreational and drinking water quality in the U.S., and may increasingly pose a global health threat.
Significant Part of Greenhouse Gas Emissions Comes From River and Sea Organisms
Running streams are key sources of the greenhouse gas carbon dioxide, but why is it so?
Better Estimates of Worldwide Mercury Pollution
New findings show Asia produces twice as much mercury emissions as previously thought.
Real-Time Data for Cancer Therapy
Biochemical sensor implanted at initial biopsy could allow doctors to better monitor and adjust cancer treatments.
New Biosensors for Managing Microbial ‘Workers’
Researchers at Harvard’s Wyss Institute have unveiled new biosensors that enable scientists to more effectively control and 'communicate with' engineered bacteria.
Playing 'Tag' with Pollution lets Scientists See Who's It
Using a climate model that can tag sources of soot from different global regions and can track where it lands on the Tibetan Plateau, researchers have determined which areas around the plateau contribute the most soot — and where.
Scroll Up
Scroll Down
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!