Corporate Banner
Satellite Banner
Environmental Analysis
Scientific Community
Become a Member | Sign in
Home>News>This Article

Proton Flow Battery Advances Hydrogen Power

Published: Monday, February 10, 2014
Last Updated: Monday, February 10, 2014
Bookmark and Share
Researchers have developed a concept hydrogen battery based simply on storing protons produced by splitting water.

The novel concept developed by researchers at RMIT University advances the potential for hydrogen to replace lithium as an energy source in battery-powered devices.

The proton flow battery concept eliminates the need for the production, storage and recovery of hydrogen gas, which currently limit the efficiency of conventional hydrogen-based electrical energy storage systems.

Lead researcher Associate Professor John Andrews, from RMIT's School of Aerospace, Mechanical and Manufacturing Engineering, said the novel concept combined the best aspects of hydrogen fuel cells and battery-based electrical power.

"As only an inflow of water is needed in charge mode - and air in discharge mode - we have called our new system the 'proton flow battery'," Associate Professor Andrews said.

"Powering batteries with protons has the potential to be a much more economical device than using lithium ions, which have to be produced from relatively scarce mineral, brine or clay resources.

"Hydrogen has great potential as a clean power source and this research advances the possibilities for its widespread use in a range of applications - from consumer electronic devices to large electricity grid storage and electric vehicles."

The concept integrates a metal hydride storage electrode into a reversible proton exchange membrane (PEM) fuel cell.

During charging, protons produced from splitting water are directly combined with electrons and metal particles in one electrode of a fuel cell, forming a solid-state metal hydride as the energy storage. To resupply electricity, this process is reversed.

Published in the International Journal of Hydrogen Energy (January, 2014), the research found that, in principle, the energy efficiency of the proton flow battery could be as high as that of a lithium ion battery, while storing more energy per unit mass and volume.

The published paper is the first to articulate and name the proton flow battery concept, and the first to include an experimental preliminary proof of concept.

"Our initial experimental results are an exciting indicator of the promise of the concept, but a lot more research and development will be necessary to take it through to practical commercial application," Associate Professor Andrews said.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Scientific News
Low Impact Fracking Fluid on Top at IChemE Global Awards
A novel fracturing fluid designed to make fracking greener.
Marine Invasive Species May Benefit From Rising CO2 Levels
Ocean acidification may well be helping invasive species of algae, jellyfish, crabs and shellfish to move to new areas of the planet with damaging consequences, according to the findings of a new report.
Game for Climate Adaptation
MIT-led project shows a new method to help communities manage climate risks.
Tufts Chemist Discovers Way to Isolate Single-crystal Ice Surfaces
Promises insights into climate, environment and age-old riddles, such as why no two snowflakes are alike.
Potential Indirect Effects of Humans on Water Quality
Newly studied class of water contaminants occur naturally, but are more prevalent in populated areas.
Rapid Method for Water, Air and Soil Pathogen Screening
Researchers at BGU and the Massachusetts Institute of Technology (MIT) have developed a highly sensitive, cost-effective technology for rapid bacterial pathogen screening of air, soil, water, and agricultural produce in as little as 24 hours.
First Results Describing Sick Sea Star Immune Response
Though millions of sea stars along the West Coast have perished in the past several years from an apparent wasting disease, scientists still don’t know why.
Microbe Sleuth
Tanja Bosak examines how life and the Earth evolved in tandem during their early history together.
The Age of Humans Controlling Microbes
Engineered bacteria could soon be used to detect environmental toxins, treat diseases, and sustainably produce chemicals and fuels.
Messing With The Monsoon
Manmade aerosols can alter rainfall in the world’s most populous region.
Scroll Up
Scroll Down

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos