Corporate Banner
Satellite Banner
Environmental Analysis
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Algae Research Hope for Carbon-Negative Source of Food and Medicines

Published: Monday, February 17, 2014
Last Updated: Monday, February 17, 2014
Bookmark and Share
Bright pink-orange microalgae found in salt lakes and coastal waters could become a renewable source of food, plastics, health products and fuel.

The University of Greenwich is leading a €10m international project to develop the microalga Dunaliella as a sustainable raw material that captures CO2 and can grow in some of the world’s harshest environments.

The project will build a biorefinery called the ‘D-Factory’ which is going to turn every part of the alga into something useful.

Algae are known for their ability to convert CO2 and sunlight into chemical energy five times faster than crops grown in soil. This particular alga is able to produce up to 80 per cent of its mass as fuel but is currently too expensive to cultivate for fuel alone. However it also produces a range of compounds of great interest in pharmaceutical, cosmetic, nutraceutical and other applications – and this may provide the solution.

Project leader Professor Pat Harvey, from the university’s Faculty of Engineering & Science, explains: “The race is on to develop a broader spectrum of compounds from algae, which can be turned into high-value products including food and medicines.

“If we can make algae biorefineries commercially viable, we will have developed a new industry founded on an environmentally-kind raw material which is also sustainable. The potential is huge.

“By 2020 these algae may also provide us with sustainable fuel. The science is there but at the moment the costs don’t add up.”

The research brings together 13 research institutions and businesses from eight countries, including world-leading experts in the biochemistry of Dunaliella, in large-scale cultivation of microalgae, in novel harvesting technologies and in bioprocessing development.

Together they aim to set a world benchmark for a biorefinery based on microalgae. Plans include the largest commercial cultivation of the single-cell organisms, in water raceways, lakes and photobioreactors.

The project hopes to demonstrate the business case for global investment in algae biorefineries, and in large-scale production of microalgae, within three years in order to raise investment for the first prototype D-Factory in Europe.

The Dunaliella alga has been chosen because it produces a wide range of compounds, appropriate for the ‘biorefinery’ concept which aims to use every element of a biomass. It can cope with extreme conditions, from salt caves in the Antarctic, to salt pans in the tropics. The high salinity and light intensity turns the microalgae orange by producing protective carotenoids. The pink-orange of many salt lakes containing Dunaliella is intensified by the presence of archaea, fellow single-celled organisms.

The D-Factory, or CO2 algae biorefinery, is a four-year collaborative project with funding from the European Union’s FP7 Cooperation Work Programme.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More than 5,000+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Atmosphere Acidity Minimised to Preindustrial Levels
Sheet ice study shows acidic pollution of the atmosphere has now almost returned to preindustrial levels.
Detecting Hazardous Substances in Water
Scientists develop device for the rapid analysis for hazardous substance content in liquids.
Environmental Impact of GM Crops
Following the adoption of GM crops, insecticide usage decreases but herbicide use increases, study shows.
Water Dynamics Affect Coral Reefs
Understanding what aids or degrades these ecosystems can help focus conservation efforts on reefs that are most likely to survive global warming.
Impact of Emerging Contaminants in Our Water Supply
Emerging contaminants, any synthetic or naturally occurring chemical not commonly monitored in the environment, in our water supply are becoming of increasing concern due to their potential ecological and/or human health effects.
Study Finds Mercury Contamination Across Western N. America
BRI research results found widespread mercury contamination at various levels across Western North America.
Device Improves Measurement of Water Pollution
Researchers have developed a device that makes it easier to measure contaminant levels in water.
Changing Ocean Chemistry Due To Human Activity
More anthropogenic carbon in the northeast Pacific means weaker shells for many marine species.
Sensor Could Help Fight Bacterial Infections
The sensor can detect E.coli bacteria in 15-20 minutes over a wide temperature range, offering a fast and cost effective tests.
Extreme Temperatures Could Increase Preterm Birth Risk
Researchers at NIH have found more preterm births among women exposed to extremes of hot and cold.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,000+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!