Corporate Banner
Satellite Banner
Environmental Analysis
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

New, Inexpensive Production Materials Boost Promise of Hydrogen Fuel

Published: Wednesday, February 26, 2014
Last Updated: Wednesday, February 26, 2014
Bookmark and Share
Combining cheap, oxide-based materials to split water into hydrogen and oxygen gases using solar energy, researchers achieved the highest reported for any oxide-based photoelectrode system.

Generating electricity is not the only way to turn sunlight into energy we can use on demand. The sun can also drive reactions to create chemical fuels, such as hydrogen, that can in turn power cars, trucks and trains.

The trouble with solar fuel production is the cost of producing the sun-capturing semiconductors and the catalysts to generate fuel. The most efficient materials are far too expensive to produce fuel at a price that can compete with gasoline.

"In order to make commercially viable devices for solar fuel production, the material and the processing costs should be reduced significantly while achieving a high solar-to-fuel conversion efficiency," says Kyoung-Shin Choi, a chemistry professor at the University of Wisconsin-Madison.

In a study published last week in the journal Science, Choi and postdoctoral researcher Tae Woo Kim combined cheap, oxide-based materials to split water into hydrogen and oxygen gases using solar energy with a solar-to-hydrogen conversion efficiency of 1.7 percent, the highest reported for any oxide-based photoelectrode system.

Choi created solar cells from bismuth vanadate using electrodeposition — the same process employed to make gold-plated jewelry or surface-coat car bodies — to boost the compound's surface area to a remarkable 32 square meters for each gram.

"Without fancy equipment, high temperature or high pressure, we made a nanoporous semiconductor of very tiny particles that have a high surface area," says Choi, whose work is supported by the National Science Foundation. "More surface area means more contact area with water, and, therefore, more efficient water splitting."

Bismuth vanadate needs a hand in speeding the reaction that produces fuel, and that's where the paired catalysts come in.

While there are many research groups working on the development of photoelectric semiconductors, and many working on the development of water-splitting catalysts, according to Choi, the semiconductor-catalyst junction gets relatively little attention.

"The problem is, in the end you have to put them together," she says. "Even if you have the best semiconductor in the world and the best catalyst in the world, their overall efficiency can be limited by the semiconductor-catalyst interface."

Choi and Kim exploited a pair of cheap and somewhat flawed catalysts — iron oxide and nickel oxide — by stacking them on the bismuth vanadate to take advantage of their relative strengths.

"Since no one catalyst can make a good interface with both the semiconductor and the water that is our reactant, we choose to split that work into two parts," Choi says. "The iron oxide makes a good junction with bismuth vanadate, and the nickel oxide makes a good catalytic interface with water. So we use them together."

The dual-layer catalyst design enabled simultaneous optimization of semiconductor-catalyst junction and catalyst-water junction.

"Combining this cheap catalyst duo with our nanoporous high surface area semiconductor electrode resulted in the construction of an inexpensive all oxide-based photoelectrode system with a record high efficiency," Choi says.

She expects the basic work done to prove the efficiency enhancement by nanoporous bismuth vanadate electrode and dual catalyst layers will provide labs around the world with fodder for leaps forward.

"Other researchers studying different types of semiconductors or different types of catalysts can start to use this approach to identify which combinations of materials can be even more efficient," says Choi, whose lab is already tweaking their design. "Which some engineering, the efficiency we achieved could be further improved very fast."


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More than 5,000+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Iron: A Biological Element?
Study shows findings which have meaning for fields as diverse as mining and the search for life in space.
Friday, June 26, 2015
Diabetes Drug Found In Freshwater Is Potential Source Of Intersex Fish
Study shows exposure to metforim causes physical changes in male fish.
Tuesday, April 28, 2015
Scientific News
Atmosphere Acidity Minimised to Preindustrial Levels
Sheet ice study shows acidic pollution of the atmosphere has now almost returned to preindustrial levels.
Detecting Hazardous Substances in Water
Scientists develop device for the rapid analysis for hazardous substance content in liquids.
Environmental Impact of GM Crops
Following the adoption of GM crops, insecticide usage decreases but herbicide use increases, study shows.
Water Dynamics Affect Coral Reefs
Understanding what aids or degrades these ecosystems can help focus conservation efforts on reefs that are most likely to survive global warming.
Impact of Emerging Contaminants in Our Water Supply
Emerging contaminants, any synthetic or naturally occurring chemical not commonly monitored in the environment, in our water supply are becoming of increasing concern due to their potential ecological and/or human health effects.
Study Finds Mercury Contamination Across Western N. America
BRI research results found widespread mercury contamination at various levels across Western North America.
Device Improves Measurement of Water Pollution
Researchers have developed a device that makes it easier to measure contaminant levels in water.
Changing Ocean Chemistry Due To Human Activity
More anthropogenic carbon in the northeast Pacific means weaker shells for many marine species.
Sensor Could Help Fight Bacterial Infections
The sensor can detect E.coli bacteria in 15-20 minutes over a wide temperature range, offering a fast and cost effective tests.
Extreme Temperatures Could Increase Preterm Birth Risk
Researchers at NIH have found more preterm births among women exposed to extremes of hot and cold.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,000+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!