Corporate Banner
Satellite Banner
Environmental Analysis
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Elucidating Odor Properties of Elk River Contaminants

Published: Tuesday, April 01, 2014
Last Updated: Wednesday, April 09, 2014
Bookmark and Share
Virginia Tech researchers utilized olfactory gas chromatography to pinpoint the concentrations of contaminants in the air.

In the more than two months since the Jan. 9 chemical spill into West Virginia’s Elk River, new findings reveal the nature of the chemicals that were released into the water and then into the air in residents’ houses.

“Based on our increasing understanding of the chemicals involved in the water crisis, the complexities and implications of the spill keep growing,” said Andrea Dietrich, professor of civil and environmental engineering at Virginia Tech. “People are still afraid to drink the water; odors persist in schools, residences, and businesses; data are still lacking for the properties of the mixture of chemicals in the crude MCHM that spilled.“

The lack of data motivated Dietrich and her research team to take on essential odor-related research that went beyond their National Science Foundation Rapid Response Research grant to better understand the properties of the chemical mixture called crude 4-methylcyclohexane methanol, the major component in the crude mix of the spilled chemicals into the Elk River. It is used in the separation and cleaning of coal products.

Rapid Response grants are the agency’s funding mechanism when a severe urgency exists in terms of the availability of data.

When Dietrich’s team first started, their goal was to conduct detailed scientific investigations to determine the long-term fate of the chemicals in the drinking water distribution system and in the environment. The spill had occurred upstream from the West Virginia America Water intake, treatment, and distribution center. Some 300,000 residents were affected, losing their access to potable water. The continued plight of West Virginia living day-to-day with the contaminant’s licorice odor resulted in Dietrich’s team unraveling the odor threshold problem.

As the ban was lifted on drinking water use, Virginia Tech researchers gathered their data and they realized that West Virginians were still complaining of an odor in their homes and in the environment.

“Like for many contaminants in water, chemicals leave the water and enter the breathing air, so that inhalation becomes a route for human exposure as well as drinking the water,” stated Daniel Gallagher,  also a faculty member in Virginia Tech’s Via Department of Civil and Environmental Engineering and a member of the research team.

The Virginia Tech researchers were able to pinpoint the concentrations of contaminants in the air that residents can detect because they have specialized equipment, uniquely available in the College of Engineering, but more commonly used in the food, beverage, and fragrance industries. Called olfactory gas chromatography, it allows the investigators to independently measure the concentrations and odors of the two isomers found in the 4-methylcyclohexane methanol.

This specific cyclohexane “consists of two isomers, a cis- and a trans- methylcyclohexane methanol. The isomers have the same chemical formula but a very slight shape difference that for many isomers, can have enormous effects on the physical, chemical, and biological properties. Only the trans isomer has the characteristic licorice-like odor. The cis isomer is significantly less odorous and has different descriptors,” Dietrich explained.

Dietrich added that they determined the odor threshold concentration of the trans-isomer to be “exceedingly low”, measured at 350 parts per trillion by volume in the air. This air odor threshold can be combined with a Henry’s Law Constant that relates the concentration in air to estimate the corresponding concentration in water. Based on an estimated Henry’s Law Constant from TOXNET, this odor threshold in water concentration is about seven parts per billion-water.

This is more than a hundred times lower than the one part per million health guideline recommended by the Center for Disease Control. Thus, the odor of MCHM is readily detectable even when the water concentration water meets the health guideline level.

This relationship now needs to be further understood through additional data collection and research.

An “important implication of the findings,” Dietrich said “is the critical need to independently measure the concentrations of the cis and the trans isomers, as was done in this study and is being done at the Virginia Tech labs. “The licorice odor will be proportional to the amount of the trans isomer, not the total amount of methylcyclohexane methanol. While there may be a tendency to measure ‘total methylcyclohexane methanol’, this could lead to misleading interpretations.”

“The cutting edge research instrumentation and support available for student and faculty research is extensive,” said lead graduate student Katherine Phetxumphou, of Woodbridge, Va., who is supported on a Virginia Tech Graduate school fellowship and is a member of Virginia Tech’s Water INTERface Interdisciplinary Graduate Education Program.

“After our research protocol for human subjects received approval in February, we logged hundreds of hours of research that all boiled down to one number – the odor threshold for trans methylcyclohexane methanol. It is amazing we accomplished so much so fast; we were committed to do this for the people of West Virginia and the research community,” Dietrich said.

Of all the human senses, odor has been the most difficult to scientifically explain. Just ten years ago, Linda Buck and Richard Axel were awarded the Nobel Prize in Medicine for being the first to decipher the genes that determine the sense of smell.

Dietrich is an expert on water quality and treatment, as well as its taste and odor assessment. Several years ago, the American Water Works Association and Research Foundation sponsored Dietrich to travel around the U.S. to educate utility staff and managers on how to use sensory analysis to detect changes in water quality. She is also a co-developer of three odor-testing methods for the daily monitoring of raw and untreated water. She is the current chair of the International Water Associations’ Specialty Group for Off-Flavors in the Aquatic Environment; she travels internationally to speak and train on detecting tastes and odors in drinking water.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,300+ scientific posters on ePosters
  • More than 4,900+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Measuring Chemistry on a Chip
Researchers developing chemical sensor chip for sample analysis in a lab or monitoring air and water quality in the field.
Unravelling a Microbial Mess
Scientists have untangled the Kansas-based mess of microbes more fully than scientists have ever done for a sample of soil.
How Cloud Connectivity Can Combat the Reproducibility Crisis
This infographic explains the reproducibility crisis, and how cloud connectivity can help overcome this problem.
Toxic Chemicals Found in Drinking Water of 33 States
High levels of fluorinated compounds have been linked to cancer, hormone disruption.
Cancer-causing Chemical in Drinking Water Traced to Fire-Fighting Foam
Fire-fighting foam containing highly fluorinated chemicals is contaminating drinking water supplies around many of the nation’s military bases, airports and industrial sites.
BMAA Implicated in Neuro-Diseases
The neurotoxin BMAA is suspected to play a role in Alzheimer’s and Parkinson’s disease.
Soil Nitrogen Age Important for Precision Agriculture
Calculating the age of nitrogen in corn and soybean fields could lead to improved fertilizer application techniques.
Safe CO2 Storage Viable Following Tests
Successful trials in Australia have led to the discovery of an inexpensive method of stored CO2 monitoring underground.
Phosphorous Pollution Remains Major Issue
Phosphorus pollution of lakes is a major problem. Researchers now look to improve the state of the lakes, otherwise freshwater quality will suffer.
Detecting Pesticides, Nerve Gas With an Electronic Nose
Detecting pesticides and nerve gas in very low concentrations? An international team of researchers led by Ivo Stassen and Rob Ameloot from KU Leuven have made it possible.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,300+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,900+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!