Corporate Banner
Satellite Banner
Environmental Analysis
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Water-cleanup Catalysts Tackle Biomass Upgrading

Published: Tuesday, July 01, 2014
Last Updated: Tuesday, July 01, 2014
Bookmark and Share
Rice University researchers register 4th ‘volcano plot’ for palladium-gold catalysts.

Rice University chemical engineer Michael Wong has spent a decade amassing evidence that palladium-gold nanoparticles are excellent catalysts for cleaning polluted water, but even he was surprised at how well the particles converted biodiesel waste into valuable chemicals.

Through dozens of studies, Wong’s team focused on using the tiny metallic specks to break down carcinogenic and toxic compounds. But his latest study, which is available online and due for publication in an upcoming issue of the Royal Society of Chemistry’s journal Chemical Science, examined whether palladium-gold nanocatalysts could convert glycerol, a waste byproduct of biodiesel production, into high-value chemicals.

In scientific parlance, the data from the study produced a “volcano plot,” a graph with a sharp spike that depicts a “Goldilocks effect,” a “just right” balance of palladium and gold that is faster - about 10 times faster - at converting glycerol than catalysts of either metal alone.

“We’ve now seen this volcano plot at least four times now, first with TCE, then with the dry cleaning contaminant ‘perc,’ and more recently with chloroform and nitrites,” Wong said. “The remarkable thing is that the reaction, in each case, is very different.”

In previous studies, the nanocatalysts were used in reduction reactions, chemical processes marked by the addition of hydrogen. In the latest tests on glycerol conversion, the nanocatalysts spurred an oxidation reaction, which involves adding oxygen.

“Oxidation and reduction aren’t just dissimilar; they’re often thought of as being in opposite directions,” Wong said.

In chemistry, the role of the catalyst is much like that of a matchmaker; catalysts cause other compounds to react with one another, often by bringing them into close proximity, but the catalysts themselves don’t take part in the reaction. Catalysts often speed up reactions that would otherwise happen too slowly, and drugmakers and chemical companies use catalysts to improve the efficiency of their chemical processing. The global market for industrial catalysts is projected to top $19 billion by 2016.

Palladium and gold - and mixtures of the two - have long been recognized as extremely effective catalysts. Among catalysts, gold is now valued because it doesn’t tarnish or oxidize, a process that can shorten a catalyst’s lifespan. Palladium is typically prized because it is especially good at binding and inducing molecules to reduce or oxidize. Wong and colleagues have demonstrated a way to bring these two metals together with better control. They build their catalysts on gold spheres that are about four nanometers in diameter. The spheres are partially covered with palladium, so that the particles’ surface contains some gold and some palladium.

Wong and colleagues have shown that covering 60-80 percent of the gold’s surface area with palladium typically produces the ideal catalyst - though the exact percentage varies for different reactions.

“Our synthesis knob, the thing we use to dial in the efficiency, is the coverage area, and the precision of that knob is really what sets us apart from other people who are studying bimetallic catalysis,” Wong said. “That precision is what produces these beautiful volcano plots, but it also helps in another way because it allows us to develop a rigorous explanation for the effects that we’re measuring.”

In the latest study, Wong, Rice graduate student and lead author Zhun Zhao and colleagues from Rice, Argonne National Laboratory and the University of Groningen in Holland used high-powered X-ray spectroscopy and other techniques to show that the “Goldilocks” coverage area for glycerol catalysis was about 60 percent.

“Palladium by itself oxidizes, which is not good because it slows down the catalysis,” Zhao said. “We found that the gold in our catalysts helps stabilize the palladium and prevents it from degrading. The catalysts in our tests had extremely high durability. Our best catalyst produced a glycerol product with higher purity and in less time than anything else we found in the literature.”

Wong said the research opens up an exciting new area of exploration for his lab.

“Now that we understand how these work with glycerol, we can study reactions of other biomass molecules like glucose, a building block of plants,” Wong said.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,200+ scientific posters on ePosters
  • More than 4,600+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Rice Scientists ID New Catalyst for Cleanup of Nitrites
Gold-palladium nanocatalysts set new mark for breakdown of nitrites.
Monday, December 02, 2013
Graphene Oxide Soaks Up Radioactive Waste
Rice, Moscow State universities collaborate on solution to toxic groundwater woes.
Tuesday, January 15, 2013
Scientific News
Tracking The Aluminum Used To Purify Tap Water
Kobe University researchers demonstrate a new analysis method to measure the concentration of aluminium used to purify tap water.
Electronic Sensor Tells Dead Bacteria From Live
The sensor, which measures 'osmoregulation', is a potential future tool for medicine and food safety.
What Makes a Good Scientist?
It’s the journey, not just the destination that counts as a scientist when conducting research.
New NIH-EPA Research Centers to Study Environmental Health Disparities
Scientists will partner with community organizations to study these concerns and develop culturally appropriate ways to reduce exposure to harmful environmental conditions.
Air Pollution Linked to Heart Disease
10-year project revealed air pollutants accelerate plaque build-up in arteries to the heart.
Following Tricky Triclosan
Antibacterial product flows through streams, crops.
Paper Filter Can Remove Viruses from Water
A new paper filter can purify water from viruses, even the most difficult and contagious.
Changing California Land Uses will Shape Water Demands in 2062
If past patterns of California land-use change continue, projected water needs by the year 2062 will increase beyond current supply.
Chemical Emitted by Trees Can Impact Ozone Levels
Researchers have found that the way that isoprene, a natural hydrocarbon compound emitted from broadleaf deciduous trees, is processed in the atmosphere at night can have a big impact on the ozone in the atmosphere the next day.
A New Sensor to Assess the Biodiversity in the Atmosphere
UPM researchers design a portable autonomous device capable of collecting and assessing bacterial, viral and fungal biodiversity in the air as well as pollen in different urban areas and seasons.
Scroll Up
Scroll Down
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,200+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,600+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!