Corporate Banner
Satellite Banner
Environmental Analysis
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Molecular Shuttle Speeds Up Hydrogen Production

Published: Tuesday, August 19, 2014
Last Updated: Tuesday, August 19, 2014
Bookmark and Share
Latest experiments with semiconductor nanocrystals succeed in significantly increasing the yield of hydrogen.

An LMU team affiliated with the Nanosystems Initiative Munich (NIM) has achieved a breakthrough in light-driven generation of hydrogen with semiconductor nanocrystals by using a novel molecular shuttle to enhance charge-carrier transport.

The amount of solar radiation that reaches the Earth in a year exceeds our current annual energy needs more than 10,000-fold. However, it is not yet possible to store sufficiently high amounts of solar energy in an efficient way. A promising approach is to utilize incoming solar radiation for the photocatalytic generation of molecular hydrogen (H2) from water. Hydrogen gas is an excellent energy source, with the product of its combustion being again water, thereby making it free of greenhouse gases.

In their latest experiments with semiconductor nanocrystals as light absorbers, physicists led by Professor Jochen Feldmann (LMU Munich), in collaboration with a team of chemists under the direction of Professor Andrey Rogach (City University of Hong Kong), have succeeded in significantly increasing the yield of hydrogen produced by the photocatalytic splitting of water. The crucial innovation, reported in the latest issue of the journal Nature Materials, is the use of a so-called molecular shuttle to markedly improve the mobility of charge carriers in their reaction system.

One photon, two charges, two roles
The basic principle behind photocatalysis seems to be quite simple. When a quantum of light (a “photon”) with sufficient energy excites a semiconductor nanocrystal, it produces a negative charge (electron) and a positive charge (hole). Photocatalytic synthesis of hydrogen gas from water requires the transfer of electrons to the hydrogen, while the holes interact with the oxygen or are scavenged by other molecules. However, before any of this can happen, the photogenerated electrons and holes must be quickly separated from each other. If the semiconducting nanocrystals are decorated with nanoparticles of a metal catalyst - such as the precious metal platinum - the electron can rapidly transfer to the metal and hydrogen production ensues. But unless the positively charged holes are effectively removed, they will accumulate and eventually bringing H2 synthesis to a halt.

One problem for an efficient removal of holes is the need of polar molecules being attached to the nanocrystals as surface ligands in order to make the nanocrystals water-soluble. By doing so, however, the resulting “ligand forest” of the attached polar molecules makes it difficult for the holes to interact with water or larger scavenger molecules.

A shuttle service for molecules
One can compare this to the problem of delivering airline passengers to their final destination. Spatial constraints obviously make it impossible for the aircraft to convey its passengers directly to their hotels in town. Instead, smaller and more maneuverable carriers, such as the shuttle buses, are used for the short last stage of the trip.

In a similar way, the research teams in Munich and Hong Kong hit on the idea of using one of the smallest constituents of their system - the hydroxyl ion formed by the dissociation of water - to penetrate the ligand forest, collect the holes from the surface of the crystals and transport them to a larger acceptor molecule. Moreover, the concentration of this molecular shuttle in the system can be easily controlled by altering the pH of the solution. Indeed, raising the pH of the solution drastically increases the rate of hydrogen production.

“I was amazed the first time I tried it. As soon as I increased the pH I could see, with the naked eye, bubbles of hydrogen rising to the surface.” says Thomas Simon, a PhD student at Professor Feldmann’s chair.

A stable and cost-effective system
The new system also has other advantages. First of all, its long-term stability could be markedly improved. Furthermore, it turns out that the costly platinum catalyst can be replaced by nickel, a far less expensive metal. “The discovery of this new mechanism could lead to entirely new approaches to the photocatalytic production of hydrogen.” adds Dr. Jacek Stolarczyk, who heads the Photocatalysis group at the chair of Photonics and Optoelectronics (PhOG) at LMU.

Chair holder Professor Jochen Feldmann, who also serves as Director of the NIM Cluster of Excellence, emphasizes the crucial role of the close collaboration between the different research groups involved in the project: “Our work could only be successful by being a product of an interdisciplinary team, and with the generous support by the NIM cluster and the Bavarian Research Network ’Solar Technologies go Hybrid‘ (SolTech).”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 4,000+ scientific posters on ePosters
  • More than 5,300+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Soil Carbon Release Might Equal U.S. Emissions
Research suggests 55M tons of carbon will be release from soils by 2050, 17% higher than prjected emissions.
Peer Review is in Crisis, But Should be Fixed, Not Abolished
After the time to get the science done, peer review has become the slowest step in the process of sharing studies, and some scientists have had enough.
Personalized Antibiotic Treatment
Researchers have developed a sensor platform that quantifies antibiotics in human blood within minutes.
Turning Greenhouse Gas into Gasoline
New catalyst provides design principles for producing fuels from carbon dioxide emissions.
Pollution Emitted Near Equator has Biggest Impact on Global Ozone
Research reveals changing global pollution emissions are generating imbalances in the production of ozone.
2 Billion Children Breathing Unsafe Air
UNICEF report reveals that 1 in 7 children live in areas of toxic outdoor pollution, with 2 billion in areas exceeding minimum air quality.
Nanobionic Spinach Detects Dangerous Chemicals
Scientists have changed spinach plants into biosensors that can detect harful chemicals and wirelessly relay the information.
"Farming" Bacteria to Boost Growth in the Oceans
Scientists discover bacteria found in marine animals can fix nitrogen as well as carbon.
Researchers Invent ‘Perfect’ Soap Molecule
Researchers create new, enivonmentally friendly soap molecule from renewable sources.
Achieving “Green” Desalination
Workshop explores ways to reduce or eliminate the carbon footprint of seawater desalination plants.
Scroll Up
Scroll Down
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
4,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,300+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!