Corporate Banner
Satellite Banner
Environmental Analysis
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

The Power of Salt

Published: Wednesday, August 20, 2014
Last Updated: Wednesday, August 20, 2014
Bookmark and Share
MIT study investigates power generation from the meeting of river water and seawater.

Where the river meets the sea, there is the potential to harness a significant amount of renewable energy, according to a team of mechanical engineers at MIT.

The researchers evaluated an emerging method of power generation called pressure retarded osmosis (PRO), in which two streams of different salinity are mixed to produce energy. In principle, a PRO system would take in river water and seawater on either side of a semi-permeable membrane. Through osmosis, water from the less-salty stream would cross the membrane to a pre-pressurized saltier side, creating a flow that can be sent through a turbine to recover power.

The MIT team has now developed a model to evaluate the performance and optimal dimensions of large PRO systems. In general, the researchers found that the larger a system’s membrane, the more power can be produced — but only up to a point. Interestingly, 95 percent of a system’s maximum power output can be generated using only half or less of the maximum membrane area.

Leonardo Banchik, a graduate student in MIT’s Department of Mechanical Engineering, says reducing the size of the membrane needed to generate power would, in turn, lower much of the upfront cost of building a PRO plant.

“People have been trying to figure out whether these systems would be viable at the intersection between the river and the sea,” Banchik says. “You can save money if you identify the membrane area beyond which there are rapidly diminishing returns.”

Banchik and his colleagues were also able to estimate the maximum amount of power produced, given the salt concentrations of two streams: The greater the ratio of salinities, the more power can be generated. For example, they found that a mix of brine, a byproduct of desalination, and treated wastewater can produce twice as much power as a combination of seawater and river water.

Based on his calculations, Banchik says that a PRO system could potentially power a coastal wastewater-treatment plant by taking in seawater and combining it with treated wastewater to produce renewable energy.

“Here in Boston Harbor, at the Deer Island Waste Water Treatment Plant, where wastewater meets the sea … PRO could theoretically supply all of the power required for treatment,” Banchik says.

He and John Lienhard, the Abdul Latif Jameel Professor of Water and Food at MIT, along with Mostafa Sharqawy of King Fahd University of Petroleum and Minerals in Saudi Arabia, report their results in the Journal of Membrane Science.

Finding equilibrium in nature

The team based its model on a simplified PRO system in which a large semi-permeable membrane divides a long rectangular tank. One side of the tank takes in pressurized salty seawater, while the other side takes in river water or wastewater. Through osmosis, the membrane lets through water, but not salt. As a result, freshwater is drawn through the membrane to balance the saltier side.

“Nature wants to find an equilibrium between these two streams,” Banchik explains.
As the freshwater enters the saltier side, it becomes pressurized while increasing the flow rate of the stream on the salty side of the membrane. This pressurized mixture exits the tank, and a turbine recovers energy from this flow.  

Banchik says that while others have modeled the power potential of PRO systems, these models are mostly valid for laboratory-scale systems that incorporate “coupon-sized” membranes. Such models assume that the salinity and flow of incoming streams is constant along a membrane. Given such stable conditions, these models predict a linear relationship: the bigger the membrane, the more power generated.

But in flowing through a system as large as a power plant, Banchik says, the streams’ salinity and flux will naturally change. To account for this variability, he and his colleagues developed a model based on an analogy with heat exchangers.

“Just as the radiator in your car exchanges heat between the air and a coolant, this system exchanges mass, or water, across a membrane,” Banchik says. “There’s a method in literature used for sizing heat exchangers, and we borrowed from that idea.”

The researchers came up with a model with which they could analyze a wide range of values for membrane size, permeability, and flow rate. With this model, they observed a nonlinear relationship between power and membrane size for large systems. Instead, as the area of a membrane increases, the power generated increases to a point, after which it gradually levels off. While a system may be able to produce the maximum amount of power at a certain membrane size, it could also produce 95 percent of the power with a membrane half as large.

Still, if PRO systems were to supply power to Boston’s Deer Island treatment plant, the size of a plant’s membrane would be substantial — at least 2.5 million square meters, which Banchik notes is the membrane area of the largest operating reverse osmosis plant in the world.

“Even though this seems like a lot, clever people are figuring out how to pack a lot of membrane into a small volume,” Banchik says. “For example, some configurations are spiral-wound, with flat sheets rolled up like paper towels around a central tube. It’s still an active area of research to figure out what the modules would look like.”

“Say we’re in a place that could really use desalinated water, like California, which is going through a terrible drought,” Banchik adds. “They’re building a desalination plant that would sit right at the sea, which would take in seawater and give Californians water to drink. It would also produce a saltier brine, which you could mix with wastewater to produce power. More research needs to be done to see whether it can be economically viable, but the science is sound.”

This work was funded by the King Fahd University of Petroleum and Minerals through the Center for Clean Water and Clean Energy and by the National Science Foundation.




Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More than 5,000+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Changing Ocean Chemistry Due To Human Activity
More anthropogenic carbon in the northeast Pacific means weaker shells for many marine species.
Wednesday, September 07, 2016
Wireless, Wearable Toxic-Gas Detector
Inexpensive sensors could be worn by soldiers to detect hazardous chemical agents.
Friday, July 01, 2016
MIT Study: Carbon Tax Needed to Cut Fossil Fuel Consumption
Researchers at MIT have suggested that the technology-driven cost reductions in fossil fuels will lead the world to continue using all the oil, gas, and coal, unless governments pass new taxes on carbon emissions.
Thursday, February 25, 2016
Living a “Mixotrophic” Lifestyle
Some tiny plankton may have big effect on ocean’s carbon storage.
Tuesday, February 02, 2016
Global Reductions in Mercury Emissions Should Lead to Billions in Economic Benefits for U.S.
Benefits from international regulations may double those of domestic policy.
Monday, January 04, 2016
“Kill Switches” Shut Down Engineered Bacteria
Synthetic biology technique could make it safer to put engineered microbes to work outside of the lab.
Monday, December 14, 2015
Shocking New Way to Get the Salt Out
MIT team invents efficient shockwave-based process for desalination of water.
Thursday, December 03, 2015
Game for Climate Adaptation
MIT-led project shows a new method to help communities manage climate risks.
Friday, November 06, 2015
Messing With The Monsoon
Manmade aerosols can alter rainfall in the world’s most populous region.
Friday, October 02, 2015
Intensity of Desert Storms May Affect Ocean Phytoplankton
MIT study finds phytoplankton are extremely sensitive to changing levels of desert dust.
Tuesday, September 01, 2015
Better Estimates of Worldwide Mercury Pollution
New findings show Asia produces twice as much mercury emissions as previously thought.
Thursday, August 13, 2015
Real-Time Data for Cancer Therapy
Biochemical sensor implanted at initial biopsy could allow doctors to better monitor and adjust cancer treatments.
Thursday, August 06, 2015
Nanoparticles Can Clean Up Environmental Pollutants
Researchers have found that nanomaterials and UV light can “trap” chemicals for easy removal from soil and water.
Thursday, July 23, 2015
New Detector Sniffs Out Origins Of Methane
Instrument identifies methane’s origins in mines, deep-sea vents, and cows.
Friday, March 06, 2015
Solving Carbon Mysteries of the Deep Ocean
New research from MIT and the Woods Hole Oceanographic Institute reveals a hidden deep-ocean carbon cycle.
Saturday, February 21, 2015
Scientific News
Atmosphere Acidity Minimised to Preindustrial Levels
Sheet ice study shows acidic pollution of the atmosphere has now almost returned to preindustrial levels.
Detecting Hazardous Substances in Water
Scientists develop device for the rapid analysis for hazardous substance content in liquids.
Environmental Impact of GM Crops
Following the adoption of GM crops, insecticide usage decreases but herbicide use increases, study shows.
Water Dynamics Affect Coral Reefs
Understanding what aids or degrades these ecosystems can help focus conservation efforts on reefs that are most likely to survive global warming.
Impact of Emerging Contaminants in Our Water Supply
Emerging contaminants, any synthetic or naturally occurring chemical not commonly monitored in the environment, in our water supply are becoming of increasing concern due to their potential ecological and/or human health effects.
Study Finds Mercury Contamination Across Western N. America
BRI research results found widespread mercury contamination at various levels across Western North America.
Device Improves Measurement of Water Pollution
Researchers have developed a device that makes it easier to measure contaminant levels in water.
Changing Ocean Chemistry Due To Human Activity
More anthropogenic carbon in the northeast Pacific means weaker shells for many marine species.
Sensor Could Help Fight Bacterial Infections
The sensor can detect E.coli bacteria in 15-20 minutes over a wide temperature range, offering a fast and cost effective tests.
Extreme Temperatures Could Increase Preterm Birth Risk
Researchers at NIH have found more preterm births among women exposed to extremes of hot and cold.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,000+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!