Corporate Banner
Satellite Banner
Food & Beverage Analysis
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

J. Craig Venter, Ph.D., Describes Biofuels, Vaccines and Foods from Made-to-Order Microbes

Published: Monday, March 26, 2012
Last Updated: Monday, March 26, 2012
Bookmark and Share
Scientists are using decades of knowledge garnered from sequencing or “reading” the genetic codes of thousands of living things to now start writing new volumes in the library of life.

J. Craig Venter, Ph.D., one of the most renowned of those scientists, described the construction of the first synthetic cell and many new applications of this work today at the 243rd National Meeting & Exposition of the American Chemical Society (ACS), the world’s largest scientific society, which is underway this week.

In a plenary talk titled, “From Reading to Writing the Genetic Code,” Venter described a fundamental shift in his field of genomics, and its promise for producing synthetic life that could help provide 21st century society with new fuels, medicines, food and nutritional products, supplies of clean water and other resources. Venter, a pioneer in the field, led the team at Celera Genomics that went head-to-head with the government-and-foundation-funded Human Genome Project in the race to decode the human genome. This quest, in which the 23,000 human genes were deciphered, ended with the teams declaring a tie and publishing simultaneous publications in 2001.

“Genomics is a rapidly evolving field and my teams have been leading the way from reading the genetic code — deciphering the sequences of genes in microbes, humans, plants and other organisms — to writing code and constructing synthetic cells for a variety of uses. We can now construct fully synthetic bacterial cells that have the potential to more efficiently and economically produce vaccines, pharmaceuticals, biofuels, food and other products.”

The work Venter described at the ACS session falls within an ambitious new field known as synthetic biology, which draws heavily on chemistry, metabolic engineering, genomics and other traditional scientific disciplines. Synthetic biology emerged from genetic engineering, the now-routine practice of inserting one or two new genes into a crop plant or bacterium. The genes can make tomatoes, for instance, ripen without softening or goad bacteria to produce human insulin for treating diabetes. Synthetic biology, however, involves rearranging genes on a much broader scale — that of a genome, which is an organism’s entire genetic code — to reprogram entire organisms and even design new organisms.

Venter and his team at the not-for-profit J. Craig Venter Institute (JCVI), which has facilities in Rockville, Maryland, and San Diego, announced in 2010 that they had constructed the world’s first completely synthetic bacterial cell. Using computer-designed genes made on synthesizer machines from four bottles of chemicals, the scientists arranged those genes into a package, a synthetic chromosome. When inserted into a bacterial cell, the chromosome booted up the cell and was capable of dividing and reproducing.

In the ACS talk, Venter described progress on major projects, including developing new synthetic cells and engineering genomes to produce biofuels, vaccines, clean water, food and other products. That work is ongoing at both JCVI and at his company, Synthetic Genomics Inc. (SGI). A project at SGI for instance, aims to engineer algae cells to capture carbon dioxide and use it as a raw material for producing new fuels. Another group uses synthetic genomic advances with the goal of making influenza vaccines in hours rather than months to better respond to sudden mutations in those viruses.

Venter also described his work in sequencing the first draft human genome in 2001 while he and his team were at Celera Genomics, as well as the work on his complete diploid genome published in 2007 by scientists at JCVI, along with collaborators at The Hospital for Sick Children in Toronto and the University of California, San Diego. In addition to continued analysis of Venter’s genome, he and his team are also studying the human microbiome, the billions of bacteria that live in and on people, and how these microbes impact health and disease.

While technology is rapidly changing, making human genome sequencing more and more accessible, the accuracy of these next generation machines remain a challenge. Thus, Venter believes it may be years before such full-genome sequences become accurate enough to find a place in routine medical care.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,200+ scientific posters on ePosters
  • More than 4,800+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Detecting Fake Parmesan Cheeses
Scientists report on a way to catch adulteration of the regional artisanal products.
Friday, May 20, 2016
How Used Coffee-Grounds Could Make Some Food More Healthful
Phenols in coffee ground extracts could be used as additives to enhances other food products.
Thursday, May 14, 2015
Kimchi-based Preservative Used in Cosmetics is Not So Natural
Scientists report that kimchi-based preservative marketed as “all-natural” contains synthetic ingredients.
Friday, April 17, 2015
Making Cashews Safer for Those with Allergies
Scientists now develop a method to process cashews to make them safer to eat.
Wednesday, August 13, 2014
Whey Beneficially Affects Diabetes and Cardiovascular Disease Risk Factors in Obese Adults
New evidence shores up findings that whey protein could have health benefits for people who are obese and do not yet have diabetes.
Thursday, May 01, 2014
Scientific News
Detecting Pesticides, Nerve Gas With an Electronic Nose
Detecting pesticides and nerve gas in very low concentrations? An international team of researchers led by Ivo Stassen and Rob Ameloot from KU Leuven have made it possible.
Massive Helium Discovery a "Game Changer" for Medical Industry
A new development is gas exploration has yielded the discovery of a huge helium gas field, which could help relieve the dwindling supply.
A “Micro Winery” That Makes Wine Continuously
An American professor, working in collaboration with EPFL, is developing a miniature device for producing wine non-stop and testing different fermentation processes.
Supplement May Switch off Cravings for High-Calorie Foods
Researchers have found that inulin-propionate ester supplement curbs cravings for junk food.
Link Between Canned Food, BPA Exposure Revealed
New Stanford research resolves the debate on the link between canned food and exposure to the hormone-disrupting chemical known as Bisphenol A, or BPA.
Peanut Allergy Prevention Strategy is Nutritionally Safe
Early-life peanut consumption does not affect duration of breastfeeding or children’s growth and nutrition.
ASMS 2016: Targeting Mass Spectrometry Tools for the Masses
The expanding application range of MS in life sciences, food, energy, and health sciences research was highlighted at this year's ASMS meeting in San Antonio, Texas.
A Future Tool for Medicine, Food Safety
A new type of electronic sensor that might be used to quickly detect and classify bacteria for medical diagnostics and food safety has passed a key hurdle by distinguishing between dead and living bacteria cells.
Local Microbes Can Predict Wine’s Chemical Profile
Regionally distinctive groups of bacteria and fungi, associated with local climate and environmental conditions, may leave a very specific “fingerprint” on a wine’s chemical composition, report University of California, Davis, researchers who collaborated on a new study with two Napa Valley wineries.
What Makes a Good Scientist?
It’s the journey, not just the destination that counts as a scientist when conducting research.
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,200+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,800+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!