Corporate Banner
Satellite Banner
Food & Beverage Analysis
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

In-Package Plasma Process Quickly, Effectively Kills Bacteria

Published: Thursday, April 18, 2013
Last Updated: Thursday, April 18, 2013
Bookmark and Share
Exposing packaged liquids, fruits and vegetables to an electrical field for just minutes might eliminate all traces of foodborne pathogens on those foods, according to a Purdue University study.

Kevin Keener, a professor of food science, looks for new ways to kill harmful bacteria, such as E.coli and Salmonella, that contaminate foods and cause serious illnesses and deaths. His method uses electricity to generate a plasma, or ionized gas, from atmospheric gases inside the food package.

This process creates a wide variety of bacteria-killing molecules including ozone, nitrogen oxides, hydrogen peroxide and others. These molecules only exist for a few hours and then revert back to the original atmospheric gas, leaving a bacteria-free product.

In findings published in the Journal of Applied Microbiology, Keener and researchers at the Dublin Institute of Technology demonstrated that sealed-package atmospheric plasma works well to kill bacteria in growth media. Their experiments showed that bacteria on these surfaces were eliminated with 20 seconds of treatment and 24 hours of exposure to the gases it creates. Keener said the cost of the process should be comparable to current chemical and heat treatments used to sanitize foods.

"Even in the most resistant bacteria-growing media, 45 seconds of treatment gave us complete elimination of the E. coli," Keener said. "Under a microscope, we saw holes forming in the cell walls of the bacteria."

Adapting the technology for liquids could allow development of portable devices to clean drinking water in areas with contamination or that lack other purification methods. It could also allow food processors to bottle juices without first heating them, a process widely used to kill bacteria that can alter products.

"This could be developed to allow you to achieve something similar to pasteurization without the heat and quality changes that occur with that process," Keener said.

In Europe, especially, new methods are being sought as alternatives to washing foods in chlorine baths.

"Chlorine water works well on hard surfaces. But there can be issues if bacteria get inside organic matter on the produce, making chlorine ineffective," Keener said.

Keener is working with researchers at Dublin Institute of Technology, National Centre for Plasma Science and Technology at Dublin City University in Ireland, and Innovació i Recerca Industrial i Sostenible (IRIS) in Spain to develop a precommercial system for larger-scale decontamination testing. After that, he would like to build a commercial system that could be used in food-processing plants.

Future research will also consider how the process affects food quality.

"Results from recent testing of E. coli bacteria in liquid suspensions demonstrated significant bacterial reductions with no heating or visual color change." Keener said. "This suggests that atmospheric cold plasma treatment may achieve a cold pasteurization process for liquid foods to extend shelf-life and improve safety."


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Laser Tool Speeds up Detection of Salmonella in Food Products
Purdue University researchers have developed a laser sensor that can identify Salmonella bacteria grown from food samples about three times faster than conventional detection methods.
Sunday, February 16, 2014
Device Speeds Concentration Step in Food-Pathogen Detection
Researchers have developed a system that concentrates foodborne salmonella and other pathogens faster than conventional methods.
Monday, October 21, 2013
Scientific News
Study Questions Presence in Blood of Heart-Healthy Molecules from Fish Oil Supplements
A new study from the Perelman School of Medicine at the University of Pennsylvania questions the relevance of fish oil-derived SPMs and their purported anti-inflammatory effects in humans.
How To Keep Your Rice Arsenic-Free
Researchers at Queen’s University Belfast have made a breakthrough in discovering how to lower worrying levels of arsenic in rice that is eaten all over the world.
Pesticide Found in 70 Percent of Massachusetts’ Honey Samples
New Harvard University study says that the pesticide commonly found in honey samples is implicated in Colony Collapse Disorder.
Printed "Smart Cap" Detects Spoiled Food
It might not be long before consumers can just hit “print” to create an electronic circuit or wireless sensor in the comfort of their homes.
Red Wine Antioxidant May Provide New Cancer Therapy Options
Resveratrol and quercetin, two polyphenols that have been widely studied for their health properties, may soon become the basis of an important new advance in cancer treatment,
New Research will Show How the Environment Could Change the Way We Eat
A new study funded by the Wellcome Trust will investigate how environmental changes over the next 20-30 years may impact the way we eat, in the UK and worldwide.
Blue LEDs Can be Used to Preserve Food
Blue light emitting diodes (LEDs) have strong antibacterial effect on major foodborne pathogens and can be used as a chemical-free food preservation method, a new study has found.
FDA Declares Trans Fatty Acids Unsafe for Consumption
TFAs are widely recognized as the most harmful fat with regard to causing cardiovascular disease (CVD).
Fat, Sugar Cause Bacterial Changes that may Relate to Loss of Cognitive Function
A study has indicated that both a high-fat and a high-sugar diet, compared to a normal diet, cause changes in gut bacteria that appear related to a significant loss of "cognitive flexibility," or the power to adapt and adjust to changing situations.
How Anthrax Spores Grow in Cultured Human Tissues
New findings to help predict risk and outcomes of anthrax attacks.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!