Corporate Banner
Satellite Banner
Food & Beverage Analysis
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Droplet Digital™ PCR Works for GMO Quantification

Published: Wednesday, May 08, 2013
Last Updated: Wednesday, May 08, 2013
Bookmark and Share
A study published in the journal PLOS ONE has found that Droplet Digital PCR technology is suitable for routine analysis of genetically modified organisms in food, feed and seeds.

More than 60 countries representing 40 percent of the world’s population require labeling of food and feed when genetically modified organisms (GMOs) reach certain thresholds. Screening for and quantifying GMOs is essential to the integrity of this labeling policy.

“Droplet Digital PCR could replace or be a good alternative to qPCR, the current benchmark in GMO quantification,” said Dr. Dany Morisset, the paper’s lead author and a researcher atSlovenia’s National Institute of Biology. Dr. Morisset, in collaboration with the EU Reference Laboratory for GM Food and Feed (EU-RL GMFF), also coordinates an international R&D project to standardize screening methods for detecting GMOs in food and feed.

The paper showed that Droplet Digital PCR (ddPCR™) technology is more accurate and reliable than real-time quantitative PCR (qPCR) for quantifying GMOs, especially at low levels. Study authors also found that the ddPCR method meets international food standards of applicability and practicality.

qPCR has Drawbacks for Detecting GMOs
The most common technique for quantifying the presence of GMOs is qPCR, thanks to its accuracy and precision. However, according to Dr. Morisset, qPCR has several drawbacks. It is often unreliable and inaccurate when quantifying very small numbers of DNA targets or when those targets are part of complex matrices such as foods or feed that contain inhibitory substances.

A 2010 research study found that chamber digital PCR (cdPCR) delivered accurate quantification at low target copy number without the need for a standard curve. The matrix also did not inhibit cdPCR because it is an end-point assay and therefore its data are less affected by amplification efficiency. However, Dr. Morisset says its high costs make cdPCR impractical for real-world use.

The ddPCR System Meets or Exceeds International Recommendations for Performance Parameters 
Dr. Morisset learned about Droplet Digital PCR technology, which was developed as an alternative to cdPCR with its easy workflow, low cost, and high throughput. Commercialized as the QX100™ Droplet Digital PCR system the ddPCR system provides thousands more partitions than in cdPCR, resulting in greater precision and per-sample costs that are up to 150 times less.

The Slovenian researchers analyzed food and feed matrices containing different percentages of a well-characterized GMO transgene. They found the ddPCR system’s performance parameters (precision, accuracy, sensitivity, and dynamic range) complied with the guidelines of the EU-RL GMFF and were comparable or superior to those for qPCR. Compared with the conventional qPCR assay, the ddPCR assay offered better accuracy at low target concentrations and greater tolerance to inhibitors found in matrices such as wheat flour and feed.

ddPCR Technology is Practical for Everyday Lab Use
International food safety standards specify that new methods should be easy for labs to implement in terms of cost, time, and workflow.

In the authors’ hands, a ddPCR assay requires 190 minutes and a qPCR assay takes 160 minutes for the typical number of samples run in parallel in midsize GMO laboratories. However, due to the greater number of PCR reactions required per sample in the qPCR assay, the time and expense of the qPCR assay grows rapidly with increasing sample throughput. Droplet Digital PCR is also simpler to set up and involves less hands-on labor than qPCR.

Dr. Morisset’s findings reveal that ddPCR is a less expensive alternative to qPCR due to the lower number of reactions. Droplet Digital PCR capitalizes on its ability to duplex as opposed to qPCR’s traditional approach of performing separate assays for both control and transgene targets. The ddPCR assay also doesn’t require reactions for a standard curve or dilutions due to lower anticipated inhibition.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,200+ scientific posters on ePosters
  • More than 4,600+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Bio-Rad Partners with the U.S. Pharmacopeial Convention
Company announces the availability of a beta version of the USP Spectral Library™ for raw material identification in the food and drug industries.
Thursday, March 06, 2014
Scientific News
ASMS 2016: Targeting Mass Spectrometry Tools for the Masses
The expanding application range of MS in life sciences, food, energy, and health sciences research was highlighted at this year's ASMS meeting in San Antonio, Texas.
Peanut Allergy Prevention Strategy is Nutritionally Safe
Early-life peanut consumption does not affect duration of breastfeeding or children’s growth and nutrition.
A Future Tool for Medicine, Food Safety
A new type of electronic sensor that might be used to quickly detect and classify bacteria for medical diagnostics and food safety has passed a key hurdle by distinguishing between dead and living bacteria cells.
Local Microbes Can Predict Wine’s Chemical Profile
Regionally distinctive groups of bacteria and fungi, associated with local climate and environmental conditions, may leave a very specific “fingerprint” on a wine’s chemical composition, report University of California, Davis, researchers who collaborated on a new study with two Napa Valley wineries.
What Makes a Good Scientist?
It’s the journey, not just the destination that counts as a scientist when conducting research.
Genetically Engineered Crops Are Safe
Distinction between genetic engineering and conventional plant breeding becoming less clear, says new report on GE crops.
Developing Non-Allergenic 'Super' Peanuts
Scientists from The University of Western Australia have joined a global research team that have identified genes in peanuts that when altered will be able to prevent an allergic response in humans.
Checking the Quality of Chocolate With Ultrasound
The method, developed by researchers from KU Leuven, could save the chocolate industry a lot of time and money.
Detecting Fake Parmesan Cheeses
Scientists report on a way to catch adulteration of the regional artisanal products.
Cancer-Fighting Properties Of Horseradish Revealed
Horseradish contains cancer-fighting compounds known as glucosinolates. Glucosinolate type and quantity vary depending on size and quality of the horseradish root. For the first time, the activation of cancer-fighting enzymes by glucosinolate products in horseradish has been documented.
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,200+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,600+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!