We've updated our Privacy Policy to make it clearer how we use your personal data. We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Advertisement

Curie-Cancer and Meiogenix Sign Two Partnership Agreements

Listen with
Speechify
0:00
Register for free to listen to this article
Thank you. Listen to this article using the player above.

Want to listen to this article for FREE?

Complete the form below to unlock access to ALL audio articles.

Read time: 2 minutes

Curie-Cancer announces two three-year partnership agreements with Meiogenix. Meiogenix develops SpiX technology under license from Institut Curie and Institut National de la Recherche Agronomique (INRA).

This technology will be deployed in yeast and mice to exploit the unexplored natural biodiversity of organisms.

The process of homologous recombination enables the exchange of nucleotide sequences between two similar or identical DNA strands. It occurs naturally in every cell. In somatic cells, it is mostly involved in the repair of genotoxic lesions, while in germline cells, it is involved in the exchange of genetic material between the parental chromosomes, with the outcome that the traits of a descendant are a ‘mixture’ of traits from its parents. 

Meiotic recombination occurs at numerous places along the chromosome, generating the genetic diversity transmitted by the gametes, but not everywhere and not at the same rate. Some chromosomal regions frequently recombine, but others are ‘cold’, resulting in the fact that they remain in parental configuration in the vast majority of gametes for many generations.

Alain Nicolas, CNRS Research Director at Institut Curie and his team developed this technology to target and enhance meiotic recombination in cold regions. The technology is based on Spo11, an evolutionary conserved endonuclease that naturally catalyzes the formation of meiotic double-strand breaks. SpiX(R) technology is based on the use of Spo11. It modulates the process of homologous recombination in the genome by increasing its frequency in cold regions. By stimulating the process in ‘regions of rare exchange’, SpiX can unlock unexplored genetic diversity.

"Our goals are twofold. Firstly, to investigate the possibilities offered by SpiX in an animal model, in this case mice. A validation in mice could lead to other possible applications in close species such as rats, which are  widely used animal models for studying many diseases such as cancer for example,” said Alain Nicolas “The other objective is to investigate a second generation of the technology and new techniques to control meiotic recombination in yeast, an organism in which we have extensively validated the technology.”

“As an SME, it is not always easy to access academic expertise,” said Giacomo Bastianelli, CEO of Meiogenix. “However, in Curie-Cancer we have found a partner who understands our need to develop the technology and to create industrial value from day one. We anticipate that the results of all our on-going research programs will be of enormous interest in major industrial fields, ranging from agrobiotech, biofuels, industrial yeasts, or animal breeding.”

“These agreements may ultimately help with the treatment of cancer, but they are also touching on other subject areas such as agriculture. This is why we are delighted to be able to contribute to the development of a French SME like Meiogenix,” said Damien Salauze, director of Curie-Cancer. “This partnership embodies the principles of the Institut Carnot label which we were awarded by the French government in 2011 in recognition of our drive to provide genuine solutions for industry and ultimately for patients.”

New perspectives in plants and agronomy
The original focus in the development of the technology was to treat cancer. However, Meiogenix also identified major applications for plants or for  yeast which have been widely used in food production processes for bread, cheese, wine and beer. SpiX technology can be used to target meiotic recombination in specific cold regions of genomes by fusing Spo11 to highly specific binding domains (ZFNs, TALENs). This can help breeders to unlock the genetic diversity that is hard to obtain with current techniques or that will require long breeding cycles.

The current research programs at Meiogenix aim to demonstrate that SpiX is able to increase the frequency of meiotic recombination in cold regions of plant genomes (rice, corn, wheat, etc), resulting in new commercial varieties of plants with interesting traits (resistance to dryness for example). This may have  the potential to meet the food needs of the growing worldwide population.