Corporate Banner
Satellite Banner
Food & Beverage Analysis
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Protecting Olive Oil from Counterfeiters

Published: Friday, April 25, 2014
Last Updated: Friday, April 25, 2014
Bookmark and Share
Using magnetic DNA particles, ETH Zurich researchers have shown how olive oil can be tagged to prevent counterfeiting.

Who guarantees that expensive olive oil isn't counterfeit or adulterated? An invisible label, developed by ETH researchers, could perform this task. The tag consists of tiny magnetic DNA particles encapsulated in a silica casing and mixed with the oil.

Just a few grams of the new substance are enough to tag the entire olive oil production of Italy. If counterfeiting were suspected, the particles added at the place of origin could be extracted from the oil and analysed, enabling a definitive identification of the producer. “The method is equivalent to a label that cannot be removed,” says Robert Grass, lecturer in the Department of Chemistry and Applied Biosciences at ETH Zurich.

The worldwide need for anti-counterfeiting labels for food is substantial. In a joint operation in December 2013 and January 2014, Interpol and Europol confiscated more than 1,200 tonnes of counterfeit or substandard food and almost 430,000 litres of counterfeit beverages. The illegal trade is run by organised criminal groups that generate millions in profits, say the authorities. The confiscated goods also included more than 131,000 litres of oil and vinegar.

A forgery-proof label should not only be invisible but also safe, robust, cheap and easy to detect. To fulfil these criteria ETH researchers used nanotechnology and nature’s information storehouse, DNA. A piece of artificial genetic material is the heart of the mini-label. “With DNA, there are millions of options that can be used as codes,” says Grass. Moreover, the material has an extremely low detection limit, so tiny amounts are sufficient for labelling purposes.

Synthetic fossil
However, DNA also has some disadvantages. If the material is used as an information carrier outside a living organism, it cannot repair itself and is susceptible to light, temperature fluctuations and chemicals. Thus, the researchers used a silica coating to protect the DNA, creating a kind of synthetic fossil. The casing represents a physical barrier that protects the DNA against chemical attacks and completely isolates it from the external environment – a situation that mimics that of natural fossils, write the researchers in their paper, which has been published in the journal ACS Nano. To ensure that the particles can be fished out of the oil as quickly and simply as possible, Grass and his team employed another trick: they magnetised the tag by attaching iron oxide nanoparticles.

Experiments in the lab showed that the tiny tags dispersed well in the oil and did not result in any visual changes. They also remained stable when heated and weathered an ageing trial unscathed. The magnetic iron oxide, meanwhile, made it easy to extract the particles from the oil. The DNA was recovered using a fluoride-based solution and analysed by PCR, a standard method that can be carried out today by any medical lab at minimal expense. “Unbelievably small quantities of particles down to a millionth of a gram per litre and a tiny volume of a thousandth of a litre were enough to carry out the authenticity tests for the oil products,” write the researchers. The method also made it possible to detect adulteration: if the concentration of nanoparticles does not match the original value, other oil – presumably substandard – must have been added. The cost of label manufacture should be approximately 0.02 cents per litre.

Labels for petrol and Bergamot essential oil

Petrol could also be tagged using this method and the technology could be used in the cosmetics industry as well. In trials the researchers also successfully tagged expensive Bergamot essential oil, which is used as a raw material in perfumes. Nevertheless, Grass sees the greatest potential for the use of invisible labels in the food industry. But will consumers buy expensive ‘extra-virgin’ olive oil when synthetic DNA nanoparticles are floating around in it? “These are things that we already ingest today,” says Grass. Silica particles are present in ketchup and orange juice, among other products, and iron oxide is permitted as a food additive E172.

To promote acceptance, natural genetic material could be used in place of synthetic DNA; for instance, from exotic tomatoes or pineapples, of which there are a great variety – but also from any other fruit or vegetable that is a part of our diet. Of course, the new technology must yield benefits that far outweigh any risks, says Grass. He concedes that as the inventor of the method, he might not be entirely impartial. “But I need to know where food comes from and how pure it is.” In the case of adulterated goods, there is no way of knowing what’s inside. “So I prefer to know which particles have been intentionally added.”

Literature reference

Michaela Puddu, Daniela Paunescu, Wendelin J. Stark, and Robert N. Grass: Magnetically Recoverable, Thermostable, Hydrophobic DNA/Silica Encapsulates and Their Application as Invisible Oil Tags. ACS Nano, 8 (3), 1677-1685. DOI: 10.1021/nn4063853 


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,200+ scientific posters on ePosters
  • More than 4,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Broccoli May Impact Drug Efficacy
Scientists discover link between broccoli component and improved drug efficacy.
Wednesday, March 16, 2016
Increasing Vitamin D Supplementation
New study from ETH Zurich finds that elderly women should consume more vitamin D than previously recommended during the winter months.
Tuesday, November 03, 2015
Scientific News
ASMS 2016: Targeting Mass Spectrometry Tools for the Masses
The expanding application range of MS in life sciences, food, energy, and health sciences research was highlighted at this year's ASMS meeting in San Antonio, Texas.
Peanut Allergy Prevention Strategy is Nutritionally Safe
Early-life peanut consumption does not affect duration of breastfeeding or children’s growth and nutrition.
A Future Tool for Medicine, Food Safety
A new type of electronic sensor that might be used to quickly detect and classify bacteria for medical diagnostics and food safety has passed a key hurdle by distinguishing between dead and living bacteria cells.
Local Microbes Can Predict Wine’s Chemical Profile
Regionally distinctive groups of bacteria and fungi, associated with local climate and environmental conditions, may leave a very specific “fingerprint” on a wine’s chemical composition, report University of California, Davis, researchers who collaborated on a new study with two Napa Valley wineries.
What Makes a Good Scientist?
It’s the journey, not just the destination that counts as a scientist when conducting research.
Genetically Engineered Crops Are Safe
Distinction between genetic engineering and conventional plant breeding becoming less clear, says new report on GE crops.
Developing Non-Allergenic 'Super' Peanuts
Scientists from The University of Western Australia have joined a global research team that have identified genes in peanuts that when altered will be able to prevent an allergic response in humans.
Checking the Quality of Chocolate With Ultrasound
The method, developed by researchers from KU Leuven, could save the chocolate industry a lot of time and money.
Detecting Fake Parmesan Cheeses
Scientists report on a way to catch adulteration of the regional artisanal products.
Cancer-Fighting Properties Of Horseradish Revealed
Horseradish contains cancer-fighting compounds known as glucosinolates. Glucosinolate type and quantity vary depending on size and quality of the horseradish root. For the first time, the activation of cancer-fighting enzymes by glucosinolate products in horseradish has been documented.
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,200+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!