Corporate Banner
Satellite Banner
Food & Beverage Analysis
Scientific Community
Become a Member | Sign in
Home>News>This Article

Miniature Gas Chromatograph Could Aid Early Crop Disease Detection

Published: Thursday, May 29, 2014
Last Updated: Thursday, May 29, 2014
Bookmark and Share
About the size of a 9-volt battery, the technology’s portability could provide farmers with a tool to quickly evaluate the health of their crops.

Researchers at the GTRI) are developing a micro gas chromatograph (GC) for early detection of diseases in crops. 

“It’s estimated that each year U.S. farmers lose 12 percent of their crops to pests and another 12 percent to diseases,” said Gary McMurray, division chief of GTRI’s Food Processing Technology Division.

To identify potential threats to crop health, farmers typically look for physical symptoms of disease, such as discolored or wilting leaves. However, in many cases, by the time these symptoms are visible, the plant is already dead or dying. And the culprit pathogen may have already spread to nearby plants, threatening the health of the entire crop.

“The key is to give farmers the ability to get early diagnostic results, which allows them to take action before it’s too late,” said McMurray.

GTRI’s micro gas chromatograph is a GC-on-chip device. Its separation column, where the gas interacts with the polymer coated on the interior walls, is about the size of a quarter, and the thermal conductive detector is about half the size of a penny. When the two are combined, the device itself is about the size of a 9-volt battery.


(Georgia Tech Photo: Rob Felt)

McMurray says the goal is to be able to fit dozens of micro GCs on a ground robot that a farmer could then use in crop fields to take samples from plant to plant and get results in minutes.

“The idea is to have the robot be a mobile chemical laboratory that provides real-time data to the farmer. The robot provides a simple way to collect the data in an unstructured environment like a farm,” said McMurray.

Because all plants and pathogens emit volatile organic compounds (VOCs), these emissions can be used as chemical markers for rapid detection. Building the micro GC was the easy part, says Jie Xu, GTRI senior research scientist. The challenge now, she explains, is correlating the VOCs emitted from plants to their health status.

“It’s relatively easy to detect VOCs, but we still have a long way to go to interpret changes in plant VOC mixtures,” said Xu.

The difficulty lies in understanding how plants react to local environmental conditions. For example, changes in temperature, humidity, and soil moisture and nutrient levels, all have an effect on VOC emissions.

To determine if the emissions are due to a pathogen, a chemical signature has to be established by studying VOCs released under these different environmental conditions.

Researchers plan to conduct field tests using a benchtop model of the micro GC in summer 2014. Working with colleagues at the USDA’s Agricultural Research Service, they will test peach trees for Peachtree Root Rot disease at the Southeastern Fruit and Tree Nut Research Laboratory in Byron, Ga. The goal is to collect air and soil samples that can be analyzed to identify the disease’s chemical signature.

McMurray says a portion of the collected samples will be retained for additional laboratory tests with a traditional GC-MS to confirm the effectiveness of the micro GC. The team will then pursue efforts to integrate it into an autonomous robotic platform for crop field sampling and VOC data analysis.

“Real-time data from sensing technologies like the micro GC, when used in conjunction with other data collected on the farm, could revolutionize the ability of farmers to identify sick plants before any physical symptoms appear,” added McMurray.

Earlier detection also means earlier intervention, which could ultimately translate into a boon for America’s farmers. “If we could cut in half the 12 percent of crop losses due to diseases, farmers could potentially realize billions of dollars more in revenue each year,” said McMurray.

In addition to agricultural applications, the micro GC could potentially be used for homeland security monitoring to detect chemical threats, such as gases in subways and dangerous explosives in vehicles.

The micro GC project is being conducted in collaboration with researchers at GTRI, Georgia Tech’s George W. Woodruff School of Mechanical Engineering and the Parker H. Petit Institute for Bioengineering and Bioscience, the Department of Plant Pathology in the University of Georgia’s College of Agricultural and Environmental Sciences, and the USDA’s Agricultural Research Service. 

Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More than 5,200+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Scientific News
Questioning the Safety of Selenium to Combat Cancer
Research indicates the need for change in practice as selenium supplements cannot be recommended for preventing colorectal cancer.
Food Analysis Applications of Core-Shell Columns in HPLC
Despite applications of core-shell particles columns in food analysis being at an early stage, articles describing their use for improving separations of several classes of compounds are becoming more frequent.
Cocoa Compound Linked to Some Cardiovascular Biomarker Improvements
The study highlights the urgent need for large, long-term RCTs that improve understanding of how the short-term benefits of cocoa flavanol intake on cardiometabolic biomarkers may be translated into clinical outcomes.
Desalinated Sea Water Linked to Iodine Deficiency Disorders
Study suggests that desalination can dramatically increase the prevalence of inadequate iodine intake.
3D-Printing in Science: Conference Co-Staged with LABVOLUTION
LABVOLUTION 2017 will have an added highlight of a simultaneous conference, "3D-Printing in Science".
A New Technique to Beat the Food Fraudsters
Shoppers can be more confident that their burgers are the real deal following a new method of testing for meat fraud developed at the Institute of Food Research on the Norwich Research Park.
Antibiotic Resistance Can Occur Naturally in Soil Bacteria
Scientists have found natural anti-biotic resistant bacteria in soils with little to no human exposure.
Eggs from Small Flocks More Likely to Contain Salmonella
Penn State study suggests that eggs from small local enterprises are not safer to eat than “commercially produced” eggs.
Using X-rays to Figure Out Fats
Scientists trying to replace food fats with non-saturated versions are looking to x-rays to aid them.
Feeding Babies Egg and Peanut May Prevent Food Allergy
The new analysis pools all existing data, and suggests introducing egg and peanut at an early age may prevent the development of allergy.

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,200+ scientific videos