Corporate Banner
Satellite Banner
Food & Beverage Analysis
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

First Direct Evidence of Plants in Neanderthal Diet

Published: Monday, June 30, 2014
Last Updated: Monday, June 30, 2014
Bookmark and Share
Although heavy on meat our prehistoric cousin's diet also included plant tissues, such as tubers and nuts.

Scientists from MIT and the University of La Laguna in Spain have identified human fecal remains from El Salt, a known site of Neanderthal occupation in southern Spain that dates back 50,000 years. The researchers analyzed each sample for metabolized versions of animal-derived cholesterol, as well as phytosterol, a cholesterol-like compound found in plants. While all samples contained signs of meat consumption, two samples showed traces of plants — the first direct evidence that Neanderthals may have enjoyed an omnivorous diet.

“We have passed through different phases in our interpretation of Neanderthals,” says Ainara Sistiaga, a graduate student at the University of La Laguna who led the analysis as a visiting student at MIT. She and her colleagues have published their study in the journal PLoS ONE.

“It’s important to understand all aspects of why humanity has come to dominate the planet the way it does,” adds co-author Roger Summons, a professor of geobiology in MIT’s Department of Earth, Atmospheric and Planetary Sciences. “A lot of that has to do with improved nutrition over time.”

Unearthing a prehistoric meal
While scientists have attempted to reconstruct the Neanderthal diet, much of the evidence has been inconclusive. For example, researchers have analyzed bone fragments for carbon and nitrogen isotopes — signs that Neanderthals may have consumed certain prey, such as pigs versus cows. But such isotopic data only differentiate between protein sources — underestimating plant intake, and thereby depicting the Neanderthal as exclusively carnivorous

Other researchers recently identified plant microfossils trapped in Neanderthal teeth — a finding that suggests the species may have led a more complex lifestyle, harvesting and cooking a variety of plants in addition to hunting prey. But Sistiaga says it is also possible that Neanderthals didn’t eat plants directly, but consumed them through the stomach contents of their prey, leaving traces of plants in their teeth.

Equally likely, she says, is another scenario: “Sometimes in prehistoric societies, they used their teeth as tools, biting plants, among other things. We can’t assume they were actually eating the plants based on finding microfossils in their teeth.”

Signs in the soil
For a more direct approach, Sistiaga looked for fecal remains in El Salt, an excavation site in Alicante, Spain, where remnants of multiple Neanderthal occupations have been unearthed. Sistiaga and her colleagues dug out small samples of soil from different layers, and then worked with Summons to analyze the samples at MIT.

In the lab, Sistiaga ground the soil into a powder, then used multiple solvents to extract any organic matter from the sediment. Next, she looked for certain biomarkers in the organic residue that would signal whether the fecal remains were of human origin.

Specifically, Sistiaga looked for signs of coprostanol, a lipid formed when the gut metabolizes cholesterol. As humans are able to break down more cholesterol than any other mammal, Sistiaga looked for a certain peak level of coprostanol that would indicate the sample came from a human.

She and Summons then used the same geochemical techniques to determine the proportions of coprostanol — an animal-derived compound — to 5B-stigmastanol, a substance derived from the breakdown of phytosterol derived from plants.

Each sample contained mostly coprostanol — evidence of a largely meat-based diet. However, two samples also held biomarkers of plants, which Sistiaga says may indicate a rather significant plant intake. As she explains it, gram for gram, there is more cholesterol in meat than there is phytosterol in plants — so it would take a significant plant intake to produce even a small amount of metabolized phytosterol.

In other words, while Neanderthals had a mostly meat-based diet, they may have also consumed a fairly regular portion of plants, such as tubers, berries, and nuts.

“We believe Neanderthals probably ate what was available in different situations, seasons, and climates,” Sistiaga says.

Richard Wrangham, a professor of biological anthropology at Harvard University, says that since no isotopic signatures have yet been found for plants that might be eaten by Neandertals, determining whether Neanderthals consumed plants “has been entirely a matter of guesswork until recently.”

“These lovely new data on fecal sterols confirm what many people have been increasingly thinking, which is that something is wrong with the inference that Neanderthals were 100 percent carnivores,” says Wrangham, who was not involved in the research. “The Sistiaga data are a wonderful new source for challenging conventional wisdom. In the end it would not be surprising to find that Neanderthals show little difference from sapiens in their diet composition.”

Sistiaga, Summons, and their colleagues plan to use similar geochemical biomarker techniques, coupled with micromorphological analysis, to analyze soil samples in Olduvai Gorge, Tanzania — a 1.8-million-year-old site where some of the earliest evidence of human ancestry have been discovered.

“We’re working in a micro context,” Sistiaga says. “Until now, people have carried out residue analysis on pots, tools, and other objects, but 90 percent of archaeology is sediment. We’re opening a new window to the information that is enclosed in Paleolithic soil and sediment.”


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
How To Keep Your Rice Arsenic-Free
Researchers at Queen’s University Belfast have made a breakthrough in discovering how to lower worrying levels of arsenic in rice that is eaten all over the world.
Pesticide Found in 70 Percent of Massachusetts’ Honey Samples
New Harvard University study says that the pesticide commonly found in honey samples is implicated in Colony Collapse Disorder.
Printed "Smart Cap" Detects Spoiled Food
It might not be long before consumers can just hit “print” to create an electronic circuit or wireless sensor in the comfort of their homes.
Red Wine Antioxidant May Provide New Cancer Therapy Options
Resveratrol and quercetin, two polyphenols that have been widely studied for their health properties, may soon become the basis of an important new advance in cancer treatment,
New Research will Show How the Environment Could Change the Way We Eat
A new study funded by the Wellcome Trust will investigate how environmental changes over the next 20-30 years may impact the way we eat, in the UK and worldwide.
Blue LEDs Can be Used to Preserve Food
Blue light emitting diodes (LEDs) have strong antibacterial effect on major foodborne pathogens and can be used as a chemical-free food preservation method, a new study has found.
FDA Declares Trans Fatty Acids Unsafe for Consumption
TFAs are widely recognized as the most harmful fat with regard to causing cardiovascular disease (CVD).
Fat, Sugar Cause Bacterial Changes that may Relate to Loss of Cognitive Function
A study has indicated that both a high-fat and a high-sugar diet, compared to a normal diet, cause changes in gut bacteria that appear related to a significant loss of "cognitive flexibility," or the power to adapt and adjust to changing situations.
How Anthrax Spores Grow in Cultured Human Tissues
New findings to help predict risk and outcomes of anthrax attacks.
Food Research at the Microscale
Thermal stage microscopy allows food science microscopists to analyze samples under a range of conditions.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!