Corporate Banner
Satellite Banner
Food & Beverage Analysis
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Sensor Detects Harmful Bacteria on Food Industry Surfaces

Published: Thursday, June 26, 2014
Last Updated: Friday, July 11, 2014
Bookmark and Share
A new device designed to sample and detect foodborne bacteria is being trialled by scientists at the University of Southampton.

The Biolisme project is using research from the University to develop a sensor capable of collecting and detecting Listeria monocytogenes on food industry surfaces, thereby preventing contaminated products from entering the market.

Listeria monocytogenes is a pathogen that causes listeriosis, an infection with symptoms of fever, vomiting and diarrhoea, that can spread to other parts of the body and lead to more serious complications, like meningitis.

Transmitted by ready-to-eat foods, such as milk, cheese, vegetables, raw and smoked fish, meat and cold cuts, Listeria monocytogenes has the highest hospitalisation (92 per cent) and death (18 per cent) rate among all foodborne pathogens. Listeriosis mainly affects pregnant women, new-born children, the elderly and people with weakened immune systems.

Current techniques to detect the bacteria take days of testing in labs, but the new device aims to collect and detect the pathogen on location within three to four hours. This early and rapid detection can avoid the cross contamination of ready-to-eat food products.

Traditional methods of testing, where sample cells are cultivated in labs, are also flawed. ‘Stressed' cells will not grow in cultures (and will therefore produce negative results) despite the bacteria being present, live and potentially harmful.

Alternative techniques, based on molecular methods, will detect all cell types, but don't differentiate between live and harmless dead cells, which can remain after disinfection.

The new device is designed to sample single cells and biofilms - groups of microorganisms where cells stick together on surfaces. Compressed air and water is used to remove the cells before they are introduced to an antibody. If Listeria monocytogenes is present, cells react with the antibody to produce a florescent signal, which is detected by a special camera.

Doctor Salomé Gião and Professor Bill Keevil from Southampton's Centre for Biological Science Unit have been studying Listeria monocytogenesbiofilms under different conditions and will be testing the new prototype. "We researched biofilms under different stresses to find the optimum pressure to remove cells from different surfaces, without disrupting the cells themselves," says Dr Gião. "We also found that biofilms can form on surfaces even if they are covered in tap water.

"The scientific research we have carried out at the University of Southampton has been used by our Biolisme project partners to develop a device which will have major implications for the food industry. By making the process simpler we hope that testing will be conducted more frequently, thereby reducing the chance of infected food having to be recalled or making its way to the consumer."

The prototype sensor has been finalised in France and field trials are now underway to test the device before it is demonstrated in food factories.

José Belenguer Ballester, from project partner ainia centro tecnológico, added: "Biolisme has raised the expectations of food business operators because the devices being developed will allow rapid assessment of the cleanliness of manufacturing plants."

The Biolisme project was started in 2009 by a consortium of six partners from four different countries and is funded by the EU's Seventh Framework Programme for Research (FP7).


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

£1.4M Funding to Safeguard Global Food Security
Researchers are part of a project that has received £1.4 million in new funding to explore how plants manipulate soils to extract more water and nutrients.
Wednesday, October 15, 2014
Honeybees' Foraging for Flowers Masked by Diesel Fumes
Exposure to common air pollutants found in diesel exhaust pollution can affect the ability of honeybees to recognise floral odours, new University of Southampton research shows.
Tuesday, October 08, 2013
Scientific News
Decrease in Foodborne Outbreaks in Denmark
Almost every other registered salmonella infection in Denmark in 2014 was brought back by Danes travelling overseas.
How Safe Is Your Ground Beef?
If you don’t know how the ground beef you eat was raised, you may be putting yourself at higher risk of illness from dangerous bacteria. You okay with that?
Sweeteners Detected in Human Breast Milk
New data show that multiple types of NNS can be passed to nursing infants.
Food Science Team Finds Key to Tasty, Salt-Reduced Bread
Three food science researchers at the University of Alberta have discovered how to reduce salt in bread by half without compromising its taste or texture.
Yorkshire Scientists Could Hold Key to Preventing Future Horsemeat Scandals
Incidents like the horse meat scandal, which caused extensive damage to the UK’s farming and retail industry, could be consigned to the past thanks to revolutionary technology developed in the UK.
Detecting Hidden Ingredients
Researchers from China have used mass spectrometry to reveal the use of undeclared substances in dietary supplements.
Study Questions Presence in Blood of Heart-Healthy Molecules from Fish Oil Supplements
A new study from the Perelman School of Medicine at the University of Pennsylvania questions the relevance of fish oil-derived SPMs and their purported anti-inflammatory effects in humans.
How To Keep Your Rice Arsenic-Free
Researchers at Queen’s University Belfast have made a breakthrough in discovering how to lower worrying levels of arsenic in rice that is eaten all over the world.
Pesticide Found in 70 Percent of Massachusetts’ Honey Samples
New Harvard University study says that the pesticide commonly found in honey samples is implicated in Colony Collapse Disorder.
Printed "Smart Cap" Detects Spoiled Food
It might not be long before consumers can just hit “print” to create an electronic circuit or wireless sensor in the comfort of their homes.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!