Corporate Banner
Satellite Banner
Food & Beverage Analysis
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Salmonella Relies on Single Food Source to Stay Potent

Published: Saturday, July 12, 2014
Last Updated: Wednesday, July 23, 2014
Bookmark and Share
Study suggests genes needed for nutrient could be attractive drug target to fight infection.

Scientists have identified a potential Achilles’ heel for Salmonella – the bacteria’s reliance on a single food source to remain fit in the inflamed intestine.

When these wily bugs can’t access this nutrient, they become 1,000 times less effective at sustaining disease than when they’re fully nourished.

The research suggests that blocking activation of one of five genes that transport the nutrient toSalmonella cells could be a new strategy to fight infection.

“For some reason, Salmonella really wants this nutrient, and if it can’t get this one, it’s in really bad shape,” said Brian Ahmer, associate professor of microbial infection and immunity at The Ohio State University and lead author of the study. “If you could block Salmonella from getting that nutrient, you’d really stopSalmonella.”

The research is published in the journal PLOS Pathogens.

Generally, most of the 42,000 Americans who report Salmonella infection annually ride out the gastroenteritis symptoms of diarrhea, fever, stomach cramps and vomiting for four to seven days, according to the Centers for Disease Control and Prevention. Antibiotics aren’t a recommended treatment for most infections because they kill good gut bacteria along with Salmonella.

The nutrient needed by Salmonella is composed of a sugar and amino acid stuck together, and is called fructose-asparagine. Its identification alone is also unusual: “It has never been discovered to be a nutrient for any organism,” Ahmer said.

Ahmer and colleagues found this important food source by first identifying the genes that Salmonellarequires to stay alive during the active phase of gastroenteritis, when the inflamed gut produces symptoms of infection.

Using a genetic screening technique, the researchers found a cluster of five genes that had to be expressed to keep Salmonella from losing its fitness during gastroenteritis. They then determined that those vital genes work together to transport a nutrient into the bacterial cell and chop up the nutrient so it can be used as food.

The study refers to the pathogen’s fitness because it’s an all-encompassing word for Salmonellasurvival, growth and ability to inflict damage.

Identifying the nutrient that the genes acted upon was a bit tricky and involved some guessing, Ahmer said. The team realized that the Salmonella genes they found resembled genes in other bacteria with a similar function – transporting the nutrient fructose-lysine into E. coli. But seeing a difference between the genes, the researchers landed, with some luck, on fructose-asparagine.

The researchers ran numerous experiments in cell cultures and mice to observe what happened to Salmonella in the inflamed gut when these genes were mutated. Under differing conditions,Salmonella’s fitness dropped between 100- and 10,000-fold if it could not access fructose-asparagine, even if all of its other food sources were available.

“That was one of the big surprises: that there is only one nutrient source that is so important toSalmonella. For most bacteria, if we get rid of one nutrient acquisition system, they continue to grow on other nutrients,” Ahmer said. “In the gut, Salmonella can obtain hundreds of different nutrients. But without fructose-asparagine, it’s really unfit.”

Because of that sole source for survival, the genes needed for acquisition of this nutrient could be effective drug targets.

“Nobody’s ever looked at nutrient transporters as drug targets because it’s assumed that there will be hundreds more transporters, so it’s a pointless pursuit,” Ahmer said.

This kind of drug also holds promise because it would affect only Salmonella and leave the trillions of other microbes in the gut unaffected.

Ahmer and colleagues are continuing this work to address remaining questions, including the window of time in which access to the nutrient is most important for Salmonella’s survival as well as identifying human foods that contain high concentrations of fructose-asparagine.

This work was supported by grants from the National Institute of Allergy and Infectious Diseases and the National Institute of General Medical Sciences.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,200+ scientific posters on ePosters
  • More than 4,600+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
ASMS 2016: Targeting Mass Spectrometry Tools for the Masses
The expanding application range of MS in life sciences, food, energy, and health sciences research was highlighted at this year's ASMS meeting in San Antonio, Texas.
Peanut Allergy Prevention Strategy is Nutritionally Safe
Early-life peanut consumption does not affect duration of breastfeeding or children’s growth and nutrition.
A Future Tool for Medicine, Food Safety
A new type of electronic sensor that might be used to quickly detect and classify bacteria for medical diagnostics and food safety has passed a key hurdle by distinguishing between dead and living bacteria cells.
Local Microbes Can Predict Wine’s Chemical Profile
Regionally distinctive groups of bacteria and fungi, associated with local climate and environmental conditions, may leave a very specific “fingerprint” on a wine’s chemical composition, report University of California, Davis, researchers who collaborated on a new study with two Napa Valley wineries.
What Makes a Good Scientist?
It’s the journey, not just the destination that counts as a scientist when conducting research.
Genetically Engineered Crops Are Safe
Distinction between genetic engineering and conventional plant breeding becoming less clear, says new report on GE crops.
Developing Non-Allergenic 'Super' Peanuts
Scientists from The University of Western Australia have joined a global research team that have identified genes in peanuts that when altered will be able to prevent an allergic response in humans.
Checking the Quality of Chocolate With Ultrasound
The method, developed by researchers from KU Leuven, could save the chocolate industry a lot of time and money.
Detecting Fake Parmesan Cheeses
Scientists report on a way to catch adulteration of the regional artisanal products.
Cancer-Fighting Properties Of Horseradish Revealed
Horseradish contains cancer-fighting compounds known as glucosinolates. Glucosinolate type and quantity vary depending on size and quality of the horseradish root. For the first time, the activation of cancer-fighting enzymes by glucosinolate products in horseradish has been documented.
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,200+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,600+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!