Corporate Banner
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Molecular Delivery Truck Serves Gene Therapy Cocktail

Published: Tuesday, August 23, 2011
Last Updated: Tuesday, August 23, 2011
Bookmark and Share
University of North Carolina scientists have devised a gene therapy cocktail that has the potential to treat some inherited diseases associated with “misfolded” proteins.

In a kind of molecular gymnastics, scientists at the University of North Carolina at Chapel Hill School of Medicine have devised a gene therapy cocktail that has the potential to treat some inherited diseases associated with “misfolded” proteins.

Like strings of beads attached end-to-end on a chain, a given sequence of a protein’s amino acids usually folds into a characteristic, three-dimensional structure. When “misfolded,” a mutant protein’s natural biological role may be compromised, sometimes with implications for disease development.

This is one of the challenging research arenas chosen by R. Jude Samulski, PhD, director of the UNC Gene Therapy Center and a professor of pharmacology.

“Among the roughly 5,000 genetic disorders for which the majority of genes have been mapped, there’s a subset in which the mutant or misfolded protein by itself can cause disease symptoms - this is in addition to the lack of a normal gene,” he says.

Samulski continued, “And that has added another layer of complication faced by the clinical research community when trying to develop and test new treatment approaches to disorders that result from toxicity associated with cellular accumulation of misfolded proteins.”

Among these disorders are cystic fibrosis, Huntington disease, amyotrophic lateral sclerosis (ALS, or Lou Gehrig’s disease), and Alzheimer’s disease.

The report published in the online Early Edition of the Proceedings of the National Academy of Sciences during the week of August 15, 2011, reveals that the Samulski lab has focused a gene therapy approach on a protein deficiency that causes serious lung and liver disease in children and adults: alpha-1 antitrypsin (AAT) deficiency, or alpha-1.

This inherited condition is caused by an abnormal AAT protein that is mainly produced by the liver. An estimated 1 out every 2,500 people in the U.S. have the condition, which is often misdiagnosed as asthma or smoking-related emphysema. Scarring of healthy liver tissue (cirrhosis) also may affect infants as well as adults diagnosed with the condition.

Studies suggest that a build-up in liver cells of “misfolded” abnormal AAT is responsible for alpha-1. It is thought that the misfolded protein builds up in the cellular endoplasmic reticulum, the part of the cell that manufactures proteins, and is unable to move out of the liver and into the bloodstream.

“Alpha-1 antitrypsin plays a very important role in the health of the lungs, preventing fluid build-up, protecting against infections,” Samulski said. “But in some individuals, the protein mutation they’ve acquired actually creates additional toxicity in the liver. And so, there’s a liver pathology in addition to the lung damage. You have two complications going on, and not just one involving a lack of alpha-1 antitrypsin’s protective role in the airway.”

In the study, first- and co-corresponding author with Samulski, Chengwen Li, PhD, research assistant professor of pediatrics, conducted a series of gene therapy experiments using a mouse model of alpha-1 disorder. All involved the adeno-associated virus (AAV) vector as a molecular delivery truck.

Samulski, also a member of the UNC Lineberger Comprehensive Cancer Center, has long pioneered methodologies for using viruses to deliver genes effectively and safely to various targets in the body, including the brain, lungs, heart and muscle.

As a graduate student at the University of Florida in the early 1980s, his thesis project was understanding and developing AAV as a vector for therapeutic genes. This work eventually led to development of AAV type-2 as a viral vector, which has been used for gene therapy trials in cystic fibrosis, hemophilia, Parkinson’s disease, retinal disorders and in several other settings, including the first clinical trial of gene therapy for muscular dystrophy in the United States.

“In essence, we engineered this sophisticated molecular Fed-Ex truck that delivers two payloads simultaneously. One payload involves a genetic approach that disables the mutant protein so that it no longer causes toxicity, and the other payload provides a new gene to replace the protein activity that is missing,” Samulski said. “In this way, Chengwen packaged both strategies into the same vector, a single therapeutic approach that would resolve both problems.”

The researchers delivered the gene therapy cocktail via the bloodstream, and targeted it to the liver. Once there, the replacement gene payload and the other payload for disabling the misfolded protein acted independently, and successfully. The authors observed “over 90 percent knockdown of the mutant AAT along with a 13- to 30-fold increase” of therapeutic AAT in the blood circulation.

“I believe we’ve validated a path to go forward and test this cocktail cassette approach in a clinical trial,” Samulski said. “This general approach has potential application to other diseases associated with misfolded proteins, such as Huntington’s disease and ALS, among others.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,200+ scientific posters on ePosters
  • More than 4,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Device Hits Pancreatic Tumors Hard With Toxic Four-Drug Cocktail, Sparing The Body
Researchers at UNC have revealed that an implantable device can deliver a particularly toxic cocktail of drugs directly to pancreatic tumors to stunt their growth and shrink them.
Saturday, February 27, 2016
Potential Brain Cancer Drug Target
UNC Lineberger researchers have reporedt that when they removed Dicer from preclinical models of medulloblastoma, a common type of brain cancer in children, they found high levels of DNA damage in the cancer cells, leading to the cells’ death.
Friday, January 08, 2016
New Path for ALS Drug Discovery
For the first time, scientists pin down the structure of toxic clumps of a protein associated with a large number of ALS cases, opening new avenues in the pursuit of drugs to stem the disease.
Thursday, January 07, 2016
Autism Mutation Isolated – Could Be Treated with Specific Enzyme
The research shows the precise cellular mechanisms that could increase risk for the disorder and how an existing drug might help thousands of people with autism.
Monday, August 10, 2015
New Gene Therapy For Hemophilia Shows Potential As Safe Treatment
Research showed that bleeding events were drastically decreased in animals with hemophilia B. Using a viral vector to swap out faulty genes proved safe and could be used for the more common hemophilia A.
Tuesday, March 17, 2015
Genetically Speaking, Mammals Are More Like Their Fathers
A first of its kind study shows that who we inherit genetic variants from – our mother or father – is crucial for the development of diseases and for research studies aimed at finding causes and potential treatments.
Wednesday, March 04, 2015
Researchers Silence Leading Cancer-Causing Gene
A novel siRNA-based molecule successfully targets KRAS, a well-studied but hard to halt protein important for cancer development and metastasis.
Monday, November 17, 2014
New Gene Therapy Proves Promising as Hemophilia Treatment
Researchers package specialized blood platelets with genes that express clotting factor, leading to fewer bleeding events.
Wednesday, December 18, 2013
New Findings Regarding DNA Damage Checkpoint Mechanism in Oxidative Stress
Scientists uncover previously unknown surveillance mechanism.
Thursday, June 20, 2013
Molecular Twist Helps Regulate the Cellular Message to Make Histone Proteins
Researchers show for the first time how two key proteins in messenger RNA communicate via a molecular twist to help maintain the balance of histones to DNA.
Monday, January 21, 2013
Informatics Approach Helps Doctors, Patients Make Sense of Genome Data
Researchers from UNC unveil an analysis framework aimed at helping clinicians spot “medically actionable findings” from genetic tests in an efficient manner.
Friday, September 21, 2012
Clinical Trial of Molecular Therapy for Muscular Dystrophy Yields Significant Positive Results
A molecular technique originally developed at the University of North Carolina at Chapel Hill has taken one step closer to becoming a treatment for the devastating genetic disease Duchenne muscular dystrophy.
Tuesday, July 26, 2011
Structure of 450 Million Year Old Protein Reveals Evolution’s Steps
Researchers have determined the atomic structure of an ancient protein, revealing in detail how genes evolved their functions.
Wednesday, August 22, 2007
Gene Discovered by Researchers Tied to Pancreatic Cancer
The gene, palladin, is involved is involved in the formation of scar tissue on nerve cells in the brain or spinal cord.
Monday, December 18, 2006
Three Lung Tumor Subtypes Identified in DNA Profiling Study
The finding may provide clinical information about patient survival in early- or late-stage disease.
Thursday, November 02, 2006
Scientific News
New CAR T Cell Therapy Using Double Target Aimed at Solid Tumors
Researchers at Penn University have described how antibody, carbohydrate combination could apply to range of cancer types.
Erasing Unpleasant Memories with a Genetic Switch
Researchers from KU Leuven and the Leibniz Institute for Neurobiology have managed to erase unpleasant memories in mice using a 'genetic switch'.
New Method Detects Telomere Length for Research into Cancer, Aging
UT Southwestern Medical Center cell biologists have identified a new method for determining the length of telomeres, the endcaps of chromosomes, which can influence cancer progression and aging.
Assessing the Effectiveness of Genome-Editing Technologies
Researchers have developed a cost-effective and rapid method for assessing edits generated by CRISPR-Cas9 and other genome-editing technologies.
New Cancer Drug Target Found in Dual-Function Protein
Findings from a study from TSRI have shown that targeting a protein called GlyRS might help to halt cancer growth.
Alzheimer's Genetics Point To New Research Direction
A University of Adelaide analysis of genetic mutations which cause early-onset Alzheimer’s disease suggests a new focus for research into the causes of the disease.
Contagious Cancers Are Spreading in Shellfish
Direct transmission of cancer among some marine animals may be more common than once thought, suggests a new study published in Nature by researchers at Columbia University Medical Center (CUMC).
Contagious Cancers Are Spreading in Shellfish
Direct transmission of cancer among some marine animals may be more common than once thought, suggests a new study published in Nature by researchers at Columbia University Medical Center (CUMC).
Fix for 3-Billion-Year-Old Genetic Error
Researchers at The University of Texas at Austin have developed a fix that allows RNA to accurately proofread for the first time.
Higher Frequency of Huntington's Disease Mutations Discovered
University of Aberdeen study shows that the gene change that causes Huntington's disease is much more common than previously thought.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,200+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!