Corporate Banner
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Cancer-Killing Cells are Caught on Film in More 3D Detail Than Ever Before

Published: Friday, September 16, 2011
Last Updated: Friday, September 16, 2011
Bookmark and Share
Scientists reveal in more detail than ever before how white blood cells kill diseased tissue using deadly granules, in research published in PLoS Biology.

The researchers, from Imperial College London and the University of Oxford, used 'optical' laser tweezers and a super-resolution microscope to see the inner workings of white blood cells at the highest resolution ever. The researchers describe how a white blood cell rearranges its scaffolding of actin proteins on the inside of its membrane, to create a hole through which it delivers deadly enzyme-filled granules to kill diseased tissue.

The study looked at a type of white blood cell called a Natural Killer (NK) cell that protects the body by identifying and killing diseased tissue.

"NK cells are important in our immune response to viruses and rogue tissues like tumours. They may also play a role in the outcome of bone marrow transplants by determining whether a recipient's body rejects or accepts the donated tissue," said Professor Daniel Davis, from the Department of Life Sciences at Imperial College London, who led the research.

The scientists hope that learning more about how NK cells identify which tissues to kill and initiate the killing process could lead to better healthcare for some patients. Professor Davis said: "In the future, drugs that influence where and when NK cells kill could be included in medical treatments, such as the targeted killing of tumours. They may also prove useful in preventing the unwanted destruction by NK cells that may occur in transplant rejection or some auto-immune diseases."

The new visual resolution of NK cell action is a result of a novel imaging technique developed in collaboration with physicists at Imperial, and the use of a super high-resolution microscope at the University of Oxford. The researchers immobilised an NK cell and its target using a pair of 'optical' laser tweezers so that the microscope could capture all the action at the interface between the cells. They then watched inside the NK cell as the actin filaments parted to create a tiny portal and the enzyme-filled granules moved to the portal, ready to pass out of the NK cell and onto the target to kill it.

Dr Alice Brown, also from the Department of Life Sciences at Imperial College London, and one of the researchers who carried out many of the experiments, said: "These previously undetectable events inside cells have never been seen in such high resolution. It is truly exciting to observe what happens when an NK cell springs into action."

The contact between an NK cell and its target is only about a hundredth of a millimetre across and the miniscule actin proteins and granules change position continuously over the few minutes from initial contact until the target is killed. The microscope has to be able to capture images quickly enough and in high enough visual detail in order to reveal their activity.

Most microscopes view images in the horizontal plane, so to view an interface between two cells at any other orientation would require 'stacks' of multiple horizontal images combined to make a 3D image. This significantly limits the speed at which cell dynamics can be viewed and reduces image quality.

Professor Paul French from the Department of Physics at Imperial College London, who helped develop the microscopy with colleagues in the Photonics Group, said: "Using laser tweezers to manipulate the interface between live cells into a horizontal orientation means our microscope can take many images of the cell contact interface in rapid succession. This has provided an unprecedented means to directly see dynamic molecular processes that go on between live cells."

Professor Ilan Davis, a Wellcome Trust Senior Fellow at the University of Oxford, whose group applies super resolution technique to basic cell biology research said: "Our microscope has given us unprecedented views inside living NK cells capturing a super-resolution 3D image of the cell structures at twice the normal resolution of conventional light microscope. This method, developed at University of California San Francisco by Professor John Sedat, maximizes the amount of light captured from the specimen while minimizing the amount of stray light inside the instrument."

This study was funded by the Medical Research Council (MRC), the Biotechnology and Biological Sciences Research Council (BBSRC) and a Marie Curie Intra-European Fellowship. It also benefited from a £150,000 award from the Rector's Research Excellence Prize to Imperial's Chemical Biology Centre to reward high academic achievement in blue skies research with significant potential. Daniel Davis and Paul French hold Wolfson Royal Society Research Merit Awards.

The full article can be accessed online using the link below.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 4,000+ scientific posters on ePosters
  • More than 5,300+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Leukaemia Cell Movement Gives Clues to Tackling Treatment-Resistant Disease
Researchers at Imperial College London have suggested that the act of moving itself may help the cells to survive, possibly through short-lived interactions with an array of our own cells.
Tuesday, October 18, 2016
Blood Pressure Drug May Boost Effectiveness of Lung Cancer Treatment
Researchers at Imperial College London have suggested that the blood pressure drug may make a type of lung cancer treatment more effective.
Wednesday, September 28, 2016
Supplement May Switch off Cravings for High-Calorie Foods
Researchers have found that inulin-propionate ester supplement curbs cravings for junk food.
Saturday, July 02, 2016
Gene Expression Controls Revealed
Researchers have modelled every atom in a key part of the process for switching on genes, revealing a whole new area for potential drug targets.
Tuesday, May 17, 2016
Switching Off Cancers' Ability to Spread
A key molecule in breast and lung cancer cells can help switch off the cancers' ability to spread around the body.
Tuesday, March 22, 2016
Fossil Find Reveals Just How Big Carnivorous Dinosaur May Have Grown
Researchers at imperial college London have said that an unidentified fossilised bone in a museum has revealed the size of a fearsome Abelisaur and may solve a hundred-year-old puzzle.
Tuesday, March 01, 2016
‘Simple Rules’ Calculate Ovarian Cancer Risk
Scientists have formulated a system that uses ultrasound images to accurately work out the likelihood of an ovarian growth being cancerous.
Wednesday, January 20, 2016
Intelligence ‘Networks’ Discovered in Brain for the First Time
Scientists from Imperial College London have identified for the first time two clusters of genes linked to human intelligence.
Thursday, December 24, 2015
Modified Mosquitoes Could Help Fight Against Malaria
The results are published in the journal Nature Biotechnology.
Tuesday, December 08, 2015
New Technique Negotiates Neuron Jungle To Target Source Of Parkinson’s Disease
Researchers from Imperial College London and Newcastle University believe they have found a potential new way to target cells of the brain affected by Parkinson’s disease.
Wednesday, September 23, 2015
Designer Molecule Shines a Spotlight on Mysterious Four-Stranded DNA
A small fluorescent molecule has shed new light on knots of DNA thought to play a role in regulating how genes are switched on and off.
Thursday, September 10, 2015
New Drug Target Identified for Serious Heart and Lung Condition
A gene has been identified that sheds new light on a potentially fatal heart and lung condition and could lead to a new treatment.
Friday, August 14, 2015
Scientists Find New Variant of Streptococcal Bacteria Causing Severe Infections
Researchers noticed a sharp rise in infections caused by emm89.
Wednesday, July 15, 2015
Gene Therapy for Cystic Fibrosis Shows Encouraging Trial Results
A therapy that replaces the faulty gene responsible for cystic fibrosis in patients' lungs has produced encouraging results in a major UK trial.
Friday, July 03, 2015
New Genetic Form of Obesity and Diabetes Discovered
Scientists have discovered a new inherited form of obesity and type 2 diabetes in humans.
Tuesday, June 30, 2015
Scientific News
Big Genetics in BC: The American Society for Human Genetics 2016 Meeting
Themes at this year's meeting ranged from the verification, validation, and sharing of data, to the translation of laboratory findings into actionable clinical results.
Personality Traits, Psychiatric Disorders Linked to Specific Genomic Locations
Researchers have unearthed genetic correlations between personality traits and psychiatric disorders.
Genetics Control Regenerative Properties Of Stem Cells
Researchers define how genetic factors control regenerative properties of blood-forming stem cells.
Diabetes Missing Link Discovered
Researchers from the University of Auckland have shown that beta catenin plays a vital role in the control of insulin release from the pancreas.
Study Reveals New Role for Hippo Pathway in Suppressing Cancer Immunity
Hippo pathway signaling regulates organ size by moderating cell growth, apoptosis and stem cell renewal, but dysregulation contributes to cancer development.
Gene-Editing Improves Vision in Blind Rats
Scientists developed a targeted gene-replacement technique that can modify genes in both dividing and non-dividing cells in living animals.
Gene Editing Yields Tomatoes That Ripen Weeks Earlier
Research team develop method to make tomato plants flower and ripen fruit two weeks faster than current growth rates.
Exploring the Genome of the River Blindness Parasite
Researchers have decoded the genome of the parasite that causes the skin and eye infection known as river blindness.
Gene Therapy Maintains Clotting Factor for Hemophilia Patients
Following a single gene therapy dose, the highest levels of an essential blood clotting factor IX were observed in hemophilia B patients.
Unexpected Role for Epigenetic Enzymes in Cancer
Researchers use epigenetics to identify the role of an enzyme family as regulators of genetic message interpretation in yeast.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
4,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,300+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!