Corporate Banner
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Singapore Scientists Lead in 3D Mapping of Human Genome to Help Understand Human Diseases

Published: Thursday, February 02, 2012
Last Updated: Thursday, February 02, 2012
Bookmark and Share
This discovery is crucial in understanding how human genes work together, and will re-write textbooks on how transcription regulation and coordination takes place in human cells.

Genome Institute of Singapore's (GIS) Associate Director of Genomic Technologies, Dr Yijun RUAN, led a continuing study on the human genome spatial/structural configuration, revealing how genes interact/communicate and influence each other, even when they are located far away from each other.

The discovery was published in Cell, on 19 January 2012. The GIS is a research institute under the umbrella of the Agency for Science, Technology and Research (A*STAR).

Using a genomic technology invented by Dr Ruan and his team, called ChIA-PET, the Singapore-led international group, which is part of the ENCODE (ENCyclopedia Of DNA Elements) consortium, uncovered some of the fundamental mechanisms that regulate the gene expression in human cells.

"Scientists have always tried to understand how the large number of genes in an organism is regulated and coordinated to carry out the genetic programs encoded in the genome for cellular functions in our cells. It had been viewed that genes in higher organisms were individually expressed, while multiple related genes in low organisms like bacteria were arranged linearly together as operon and transcribed in single unit," Dr Ruan explained.

"The new findings in this study revealed that although genes in human genomes are located far away from each other, related genes are in fact organised through long-range chromatin interactions and higher-order chromosomal conformations. This suggests a topological basis akin to the bacteria operon* system for coordinated transcription regulation. This topological mechanism for transcription regulation and coordination also provides insights to understand genetic elements that are involved in human diseases."

GIS' executive director Prof Huck Hui NG said: "This is an important study that sheds light on the complex regulation of gene expression. Yijun's team continues to use the novel method of Chromatin Interaction Analysis with Paired-End-Tag sequencing to probe the higher order interactions of chromatin to discover new regulatory interactions between genes."

"This publication describes ground-breaking work by Dr Yijun Ruan and his team at Genome Institute of Singapore," added Dr Edward Rubin, Director of the Joint Genome Institute in US. "They address the fundamental question of how communication occurs between genes and their on and off switches in the human genome. Using a long range DNA mapping technology called ChIA-PET, the study reveals in three dimensional space that genes separated linearly by enormous distances in the human genome can come to lie next to each other in the cell when it is time for them to become active.

"I expect this study to move rapidly from primary scientific literature to textbooks describing for future students the operating principles of the human genome. The ChIA-PET technology, that is the telescope used in this exploration of the human genome, is an innovative and powerful molecular technology invented by Dr Ruan and his collaborators."

The ENCODE is an ongoing project which was awarded to Dr Ruan's team by the National Human Genome Research Institute (NHGRI), an institute belonging to the National Institutes of Health (NIH, USA). The project was set up in 2003 with the aim of discovering all functional elements in the human genome to gain a deeper understanding of human biology and develop new strategies for preventing and treating diseases. So far Dr Ruan's team has received over US$2 million towards this project.

*In genetics, an operon is a functioning unit of genomic DNA containing a cluster of genes under the control of a single regulatory signal or promoter.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Genome Institute of Singapore and Fluidigm Establish Asia's First Single-Cell Genomics Research Center
Center exclusively dedicated to accelerating the understanding of how individual cells work, and how diagnosis and treatment might be enhanced through insight derived from single cells.
Monday, December 17, 2012
Scientists’ Genetic Mapping of Han Chinese Provides Invaluable Information of Ethnic Chinese Ancestry
Findings provides invaluable information to determine the design and interpretation of genetic studies of human diseases.
Monday, December 07, 2009
Genome Institute of Singapore and Roche NimbleGen: Tracking the Evolutionary Path of the H1N1 Influenza A
Researchers develop a generic PCR approach to amplify full genome of influenza A virus; followed by NimbleGen microarray-based hybridization sequencing.
Friday, May 29, 2009
Scientific News
Liquid Biopsies: Utilization of Circulating Biomarkers for Minimally Invasive Diagnostics Development
Market Trends in Biofluid-based Liquid Biopsies: Deploying Circulating Biomarkers in the Clinic. Enal Razvi, Ph.D., Managing Director, Select Biosciences, Inc.
Genetic Tug of War
Researchers have reported on a version of genetic parental control in mice that is more targeted, and subtle than canonical imprinting.
Error Correction Mechanism in Cell Division
Cell biologists have reported an advance in understanding the workings of an error correction mechanism that helps cells detect and correct mistakes in cell division early enough to prevent chromosome mis-segregation and aneuploidy, that is, having too many or too few chromosomes.
How to Become a Follicular T Helper Cell
Uncovering the signals that govern the fate of T helper cells is a big step toward improved vaccine design.
Researchers Resurrect Ancient Viruses
Researchers at Massachusetts Eye and Ear and Schepens Eye Research Institute have reconstructed an ancient virus that is highly effective at delivering gene therapies to the liver, muscle, and retina.
Cell Aging Slowed by Putting Brakes on Noisy Transcription
Experiments in yeast hint at ways to extend life of some human cells.
Long Telomeres Associated with Increased Lung Cancer Risk
Genetic predisposition for long telomeres predicts increased lung adenocarcinoma risk.
Expanding the Brain
A team of researchers has identified more than 40 new “imprinted” genes, in which either the maternal or paternal copy of a gene is expressed while the other is silenced.
Identifying a Key Growth Factor in Cell Proliferation
Researchers discover that aspartate is a limiter of cell proliferation.
Study Uncovers Target for Preventing Huntington’s Disease
Scientists from Cardiff University believe that a treatment to prevent or delay the symptoms of Huntington’s disease could now be much closer, following a major breakthrough.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!